
GSRC 2006

Proceedings of

The First Annual Graduate
Student Research Conference

October 13, 2006
Santa Barbara, California

Sponsored by The Department of Computer Science

University of California, Santa Barbara

http://www.cs.ucsb.edu

GSRC 2006

Proceedings of

The First Annual Graduate
Student Research Conference

October 13, 2006
Santa Barbara, California

Sponsored by The Department of Computer Science

University of California, Santa Barbara

http://www.cs.ucsb.edu

i

Message From the Conference Chairs

Dear Computer Science Department,

It is with tremendous excitement that we present to you the proceedings of
the first annual Computer Science Graduate Student Research Conference.
Our department shines in two areas: our commitment to technical excel-
lence, and our welcoming, cordial, and collaborative research community.
Our hope is that this conference provides another opportunity to bring to-
gether students and faculty, both academically and socially, and strengthen
the ideals that make this department dear to me. And we encourage future
generations of graduate students to carry on this tradition with conferences
like this.

Within these pages you will find ten abstracts describing new, upcoming
research projects from our department’s graduate students. Papers for this
conference were selected first and foremost on their technical quality, but
were also reviewed for clarity and presentation style. The Program Com-
mittee and the chairs are very pleased with the quality and the diversity of
the research contained here. We present these to educate the reader about
ongoing research in the department, encourage communication and collab-
oration, and stimulate new projects. Also, we hope to provide the authors
with encouragement, feedback, and support on the research projects that
will hopefully carry them through their degrees here.

There are many thanks necessary to those that helped make this conference
a reality. First, we owe tremendous thanks to the Program Committee, who
dedicated time and attention to selecting quality material for these proceed-
ings. Our department staff–Shelly Vizzolini, Amanda Hoagland, and Greta
Carl-Halle–also help to plan and locate rooms for this event. Finally, we
want to thank Fred Chong for giving us the opportunity to organize this,
and our advisors, Rich Wolski and Kevin Almeroth, for tolerating yet an-
other diversion.

Matthew S. Allen and Allan Knight
Committee Chairs

Contents

GSRC 2006 Program Committee Members iv
GSRC 2006 Events Schedule . v

Proceedings
XML View Maintenance . 1
Arsany Sawires, Divyakant Agrawal and Amr El Abbadi

Online Quantum Algorithms . 3
Qingqing Yuan and Wim van Dam

Policy-Driven Separation for Systems-on-a-Chip 5
Ted Huffmire and Tim Sherwood

IQU: Practical Queue-Based User Association Management
of WLANs . 7

Amit P. Jardosh, Kimaya Mittal, Krishna N. Ramachandran,
Elizabeth M. Belding, and Kevin C. Almeroth

Application Specific Linux (ASL) 9
Lamia Youseff, Rich Wolski, and Chandra Krintz

Classification of Abnormal Activities in Video 11
Justin Muncaster

Application Testing and Analysis for Security 13
Greg Banks, Marco Cova, Viktoria Felmetsger, Richard Kemmerer,
and Giovanni Vigna

ii

CONTENTS iii

Simulation of Large Scale Sensor Network 15
Ye Wen and Rich Wolski

A Sketch Interface to Aid 3D Scene Reconstruction 17
Jonathon Ventura

Analyzing the Phase Behavior of the Circadian Clock in Arabidop-
sis thaliana . 21

Stephanie R. Taylor, Francis J. Doyle III, and Linda R. Petzold

iv

GSRC 2006 Program Committee Members

Committee Chairs: Matthew S. Allen, Distributed Systems

Allan Knight, Education Technology

Faculty Advisor: Fred Chong

Committee Members: Stephen DiVerdi, Computer Vision

Sotiria Lampoudi, Computational Science and Engineering

Darren Mutz, Network Security

Sara Woodworth, Theory

Kimaya Mittal, Wireless Networking

Viral Shah, Scientific Computing

Priya Nagpurkar, Compilers

Ryan Dixon, Architecture

Ahmed Metwally, Database Systems

Vebjorn Ljosa, Bioinformatics

Administrative Support Greta Halle
Student Affairs Manager

Amanda Hoagland
Graduate Program Coordinator

Sandy Jacobs
Undergraduate Program Coordinator

v

GSRC 2006 Events Schedule

10:00 - 10:10: Setup,
Opening Remarks

10:10 - 10:20: Matthew Allen,
Opening Remarks

10:20 - 10:40: Arsany Sawires,
XML View Maintenance

10:40 - 11:00: Qingqing Yuan,
Online Quantum Algorithms

11:00 - 11:20: Ted Huffmire,
Policy-Driven Separation for Systems-on-a-Chip

11:20 - 11:40: Amit Jardosh,
IQU: Practical Queue-Based User Association Management for WLANs

11:40 - 12:00: Lamia Youseff,
Application Specific Linux (ASL)

12:00 - 12:30: Pizza Lunch
12:30 - 1:30: Josep Blanquer,

Invited Speaker
1:30 - 1:40: Break
1:40 - 2:00: Justin Muncaster,

Classification of Abnormal Activities in Videos
2:00 - 2:20: Greg Banks,

Application Testing and Analysis for Security
2:20 - 2:40: Ye Wen,

Simulation of Large Scale Sensor Networks
2:40 - 3:00: Jonathan Ventura,

A Sketch Interface to Aid 3D Scene Reconstruction
3:00 - 3:20: Stephanie Taylor,

Analyzing the Phase Behavior of the Circadian Clock in Arabidopsis
thaliana

3:20 - 3:30: Allan Knight,
Closing Remarks

XML View Maintenance

Arsany Sawires Prof. Divyakant Agrawal Prof. Amr El Abbadi

Distributed Systems Lab (DSL)
Department of Computer Science

University of California Santa Barbara (UCSB)
{arsany,agrawal,amr}@cs.ucsb.edu

1. INTRODUCTION
Caching frequently accessed items is a well-known tech-

nique in both hardware and software computer systems. The
main goal is to improve the system performance by avoiding
some communication and/or processing costs. In this paper
we focus on caching the results of frequent queries in data
management systems, in hope for answering future queries
from the cached results. Answering queries from caches has
proved to be a very successful technique for improving per-
formance of data management systems. The approach is
commonly known in the world of data management as View
Materialization. If a query (view) is known to be frequent,
then its result is computed from the base (source) data and
cached (materialized) so that some future queries can be
answered from the cache. This technique can significantly
save processing and/or communication costs. The savings
in processing cost are mainly due to the fact that the size
of the cached result is usually orders of magnitude less than
the size of the base data, and thus the cache computations
run much faster. As for the communication cost, signifi-
cant savings can be achieved in data-centric distributed sys-
tems, such as web databases, where caching in a middle-tier
(between the server and the client) can help avoiding (or
shortening) the trip of the query from the client to the data
server and, more importantly, the trip of the query result
back from the server to the client. Figure 1 illustrates the
use of materialized views.

Base Data
System (Server) Client

View
Maintenance

System

Base Data Materialized Views

Query

Answer

Base
Updates

View
Maintenance

Communication

Figure 1: Using and Maintaining Mat. Views

For a motivating example, assume a query that you have
issued against Amazon.com asking for all books by author
”X” since 1990. Now assume that you, or another client,
are asking for all the books by the same author ”X” since
2000. Obviously, a cache holding the result of the first query
can efficiently answer the second query due to savings in
processing and in communication as explained above.

The technique of view materialization has raised several

interesting research-worthy questions in the field of data
management. Given a query Q and a cache holding the
result of a previous query (view) V, is it possible to answer
Q using V? If yes, then how to rewrite Q into Q’ such that
when Q’ is computed using the the cache V, we get the
same (or almost the same) answer as if we compute Q using
the entire base data, e.g. the entire Amazon.com database?
This problem is known as Rewriting Queries Using Views.
Another basic problem is that of View Selection, namely,
what are the views (queries) that we should select to be
materialized such that the entire system performance is op-
timized?

In this paper, we do not discuss more about the two prob-
lems of rewriting queries and view selection, rather, we focus
on a third fundamental problem raised by the approach of
view materialization. We focus on the problem of maintain-
ing the consistency of the cached results when updates take
place at the base data. Back to our Amazon.com example:
assume that after caching the result of the first query in a
middle-tier, Amazon.com decided to offer a 1-day 20% sale
on the books by author ”X”. Now, the information in the
cache is inconsistent with the base data since they reflect
higher prices than the actual current prices. This incon-
sistency is not in favor of neither the server (Amazon.com)
which could lose business, nor the client which could miss
the sale opportunity. Thus, the cache should be updated
according to the base updates in order to restore the cache
consistency. The degree to which inconsistency can be tol-
erated depends on the application. The process of restoring
the cache (view) consistency is known in the data manage-
ment world as View Maintenance.

A naive approach to view maintenance is to recompute
the cached results whenever updates take place at the source
data. The processing and communication costs of this naive
strategy is usually prohibitive, especially when base updates
happen frequently. Very often, the base updates do not
cause any change in the cached view results, i.e. the updates
are irrelevant to the views, and thus any view recomputa-
tion is redundant work. Even when an update affects the
cached view result, it is usually much more efficient to incre-
mentally maintain the view, if possible, rather than naively
recomputing the entire view result. Hence, the problem of
Incremental View Maintenance has received significant at-
tention in the database research community.

The traditional model for data management systems is the
well-known relational model. Recently, the XML tree-based
data model has become a de-facto standard for representa-
tion and exchange of data. The XML model is gaining pop-

1

ularity mainly because it fits very well in the new world of
data management where integration and inter-operation be-
tween heterogeneous systems have become real needs. Given
this, the data management community started revisiting
the classical problems, such as View Maintenance, with the
XML data model. In this paper, we briefly abstract some re-
cent work that we have done at UCSB regarding the problem
of maintaining materialized views defined over XML base
data.

Views (queries), and base updates are defined using XML-
specefic data manipulation languages. The World Wide Web
Consortium (W3C), which is responsible for issuing stan-
dard specifications for the WWW, has recommended a tree
navigation language for XML documents (trees), the lan-
guage is known as XPath. Another language, XQuery, which
extends the power of XPath is expected to become a W3C
recommendation sometime this year (2006). In our work so
far we have focused on XPath as a basic XML query lan-
guage. For a simple example of an XPath expression, con-
sider the following expression (some syntax simplification is
applied here):

doc(library.xml)/book[author = ”X”][year >= 1990]/title

This expression has 3 steps: the first specifies the XML doc-
ument (root of a tree) as ”library.xml” , the second selects
books satisfying some criteria, and the third selects the titles
of the books selected in the second step. The second step
has two selection predicates (criteria): the author is ”X”,
and the year is 1990 or later. In general, an expression can
have any number of steps and predicates.

We have identified two main variations of the problem
of maintaining views defined using XPath expressions; Sec-
tion 2 briefly describes these variations (models), and sum-
marizes the solutions that we have proposed. Section 3 dis-
cusses future research directions for the problem.

2. TWO MODELS
Figure 1 shows that the base data system and the view

(cache) maintenance system need to communicate with each
other in order to maintain the consistency of the material-
ized views. As mentioned above, we have identified two
variations (models) of the view maintenance problem. Intu-
itively, the main distinction between the two models is the
degree of ”coupling” between the view maintenance system
and the base data system. The degree of coupling between
these two systems determines the type (degree of specificity)
of information that can be communicated between the two
systems. If the systems are ”tightly coupled”, they can
exchange detailed (very specific) information to facilitate
the view maintenance process. On the other hand, if they
are ”loosely coupled”, then the degree of specificity of the
communicated information is limited because it has to com-
ply with the universal standard specifications, such as the
XPath language.

The tight-coupling model is suitable for situations where
the base data system and the view maintenance system are
actually the same; this can be the case when the views are
materialized within the base data system itself to improve
the performance of query processing. On the other hand,
the loose-coupling model has become a reality in today’s
world where the WWW technologies have allowed hetero-
geneous and autonomous systems to inter-operate through
universally standard protocols and specifications.

In [2], we have proposed a solution for the tight-coupling
model. Given a base update, this solution can always in-
crementally maintain the materialized views very efficiently,
relative to the naive view recomputation approach. To achieve
this result, we have assumed the following tight-coupling as-
sumptions:

1. Very specific information, known as update paths, about
each base update is reported by the base data system
to the view maintenance system. Particularly, the ex-
act locations of the updated nodes in the XML tree
are reported.

2. The view maintenance system can issue queries to the
base data system such that the execution of these queries
starts at nodes other than the tree root. This assump-
tion is essential for the efficiency of the incremental
maintenance solution.

3. The results returned by the base data system in re-
sponse to the view maintenance queries include ids of
the XML tree nodes.

To enable efficient incremental maintenance, the solution we
provided for this model maintains some auxiliary informa-
tion, known as result paths, in addition to the materialized
views. In this context, our solution enjoys the following
desirable property: the size of the auxiliary information is
proportional to the size of the materialized views. The main
conclusion of this work is that using update paths and re-
sult paths, we can achieve efficient and scalable incremental
XPath view maintenance.

In [1], we have relaxed the three assumptions mentioned
above since none of them is valid in loosely coupled set-
tings. In the new model, the view maintenance system uses
only the following information: (1) the update expression,
rather than the specific update path, (2) the view expression,
and (3) the materialized view result (which does not include
any node ids). This model is suitable for loosely-coupled
systems. We have shown that incremental maintenance is
not always possible under this model. Thus, maintaining
the consistency of the views requires frequent view recom-
putations. Hence, our goal in this work is to reduce the
frequency of view recomputation. We do this by detect-
ing cases where a base update is irrelevant to a view, and
cases where a view is self maintainable (maintainable with-
out base queries) under a base update. The experimental
results show the effectiveness of the proposed approach in
reducing view recomputations.

3. LOOKING FORWARD
Some issues remain open for future work: we would like to

extend the data and query model to handle order in XML
documents; we would also like to explore the possibilities
of using schema information, if available. For more details,
please see [2, 1].

4. REFERENCES
[1] Arsany Sawires, Junichi Tatemura, Oliver Po,

Divyakant Agrawal, Amr El Abbadi, and K. Selçuk
Candan. Maintaining xpath views in loosely coupled
systems. In VLDB, 2006.

[2] Arsany Sawires, Junichi Tatemura, Oliver Po,
Divyakant Agrawal, and K. Selçuk Candan.
Incremental maintenance of path expression views. In
SIGMOD Conference, 2005.

2

Online Quantum Algorithms

Qingqing Yuan
qqyuan@cs.ucsb.edu

Wim van Dam
vandam@cs.ucsb.edu

ABSTRACT
In recent years, online monitoring of data streams has emerged as
an active topic in data management field. A lot of research has been
focused on finding the most frequent items in the data streams. In
this paper, we will try to use quantum mechanisms to develop on-
line algorithms for frequent items finding. The main contribution of
our work is that we prove the lower bound of space requirement for
quantum online algorithms that determine the most frequent item.

1. INTRODUCTION
Recently, much attention has focused on the theory ofonline moni-
toring of data streams, which is relevant in many domains, includ-
ing web-applications, network security, sensor monitoring, etc. In
[2], the authors summarize that the data stream model differs from
the conventional stored relation model in the following ways: The
data elements are processed online; The data streams are poten-
tially unbounded in size; and each element is processed only once.

One of the most basic problems on a data stream is that of finding
the most frequent items in the stream. A lot of research has been
done on estimating the most frequent items in a data stream using
limited storage space. A well known lower bound ofΩ(n) is given
by Alon et al [1], wheren is the size of the alphabet of items.

At the other end of the spectrum, since the mid 1980’s, quantum
computation and quantum information are extensively studied, which
yields many new and exciting capabilities for information process-
ing and communication. For instance, while the best-known factor-
ing algorithms for a classical computer run in exponential time,
Shor’s quantum algorithm can factor ann-bit integer inO(n3)
time [7]. Recently the space complexity of quantum algorithms
has been extensively studied. le Gall[5] demonstrates a special lan-
guage which can be recognized by an online quantum Turing ma-
chine with bounded-error which incurs an exponential decrease in
the space complexity in comparison to using the classical Turing
machine to solve the target problem.

In this work, we will try to use quantum superpositions to store
the information from the data stream, and extract useful result from
these superpositions online. We’re hoping to use less qubits than
classical bits for online algorithms. The main result of this paper
is that we prove the lower bound of space complexity for online
quantum algorithms of estimating the most frequent item isΩ(n).

2. CLASSICAL ONLINE ALGORITHMS

We often talk about the problem of finding the mostfrequent el-
ementsor top-k elementsin a stream. Given an alphabet,A, let
S = (s1, s2, . . . , sm) be a a stream of sizem, wheresi ∈ A. A
frequent elementsi is an element whose frequency exceeds a user
specified supportdφme, where0 ≤ φ ≤ 1; whereas thetop-k
elementsare thek elements with highest frequencies. Many algo-
rithms have been proposed to solve this problem. An overview of
the algorithms is shown in Figure 1. The main goal of the algo-
rithms is to make the local memory as small as possible. The meth-

�������

����	

���
� � � � � �

����� �����	

Figure 1: A schematic overview of an online algorithm receiv-
ing queries on a data stream

ods can be mainly categorized intocounter-based[4] and sketch-
based[6] algorithms.

Counter-based Algorithmskeep an individual counter for each el-
ement in the monitored set, which is a subset ofA. If the current
element is in the monitored set, its counter is updated; otherwise it
is ignored, or some algorithm-dependent actions are taken.

Sketch-based algorithms, instead, provide frequency estimation for
all elements by using bitmaps of counters. Specifically, each new
observed element is hashed into the whole counter space using a
family of hash functions. The hashed counter is updated for every
hit of the new observed element. The hash collisions inevitably
incur accuracy loss of the final reported frequency of each element.

In general, counter-based algorithms process each item more effi-
ciently. However, the accuracy likely depends on the element or-
der in a data stream since it always involves a specific strategy of
choosing a subset of the elements to be monitored. On the contrary,
sketch-based algorithms are able to keep track of all the elements
using a hash mapping, and hence they are independent on the el-
ement order in a data stream. The major disadvantage of sketch-
based algorithms lies in the expensive computation of processing
each item. Moreover, the accuracy will be degraded significantly
due to hash collisions.

The exact solution to the original frequent items problem has im-
practical space requirements. Alon et al.[1] give theΩ(n) lower

3

bound on the space complexity of any algorithm for estimating the
most frequent item in an arbitrary data stream.

3. ONLINE QUANTUM ALGORITHM
3.1 A Model of Quantum Online Algorithms
Let X = (x1, x2, . . . , xm) be a sequence of elements, wherexi ∈
A = {1, 2, . . . , n}. Consider a quantum computer with an initial
stateρ0, whereρ0 is the memory of s qubits for our quantum com-
puter. We definen transformations:{Txi : xi ∈ A}, and each
of them is a transformation acting ons-qubits. Thus, the machine
can perform different transformations according to the content of
the current data itemxi. Once a piece of dataxi is available, the
machine is evolved from stateρi to ρi+1.

The evolution of the quantum computer with respect to the whole
data stream can be described as following:

ρ0

Tx17−→ ρ1

Tx27−→ · · · Txm7−→ ρm

As Txi can be a non-unitary transformation, stateρi could be a
mixedstate.

3.2 Lower bound of space requirement
Let fi = |{j : xj = i}| represents the number of occurrences of
elementi in the data stream, and the task of estimating the most
frequent alphabet can be defined as below:F∞ = max1≤i≤n fi.

In this sections, we focus on the lower bound for the space com-
plexity of online quantum algorithm approximatingF∞. As in [1],
the lower bound can be obtained after reducing the problem to an
appropriate communication complexity problem.

Before presenting the space bound for approximatingF∞, we first
introduce some preliminary knowledge regarding thequantum com-
munication complexitywith respect to a functionf : {0, 1}n ×
{0, 1}n → {0, 1}, introduced by Yao[8]. Consider two parties,
A and B, with unlimited power to compute the value of a Boolean
function f(x, y), wherex and y are binary vectors of lengthn,
party A possessesx and party B possessesy. To compute the value,
the parties are allowed to exchange qubits with each other. At the
end of the communication, party B outputs the value off(x, y).
The complexity is measured by the number of qubits exchanged
in the worst case. One of the most prominent functions used in
above-mentioned algorithm is the disjointness functionDISJn.
Let DISJn : {0, 1}n × {0, 1}n → {0, 1} denote the Boolean
function(called theDisjointness function), whereDISJn is 1 if
and only if two subsets of{1, 2, · · · , n} whose characteristic vec-
tors arex andy intersect.

It is known that the communication complexity ofDISJn for one-
round protocols isΩ(n)[3]. Inspired by their work, we try to prove
the lower bound of the space requirement for approximatingF∞.

Theorem:For fixed probabilityε > 0, any online quantum algo-
rithm that approximatesF∞ of sequencesX of 2n elements from
an alphabetA = {1, ..., n} within [2/3F∞, 4/3F∞] with success
probability at leastε requiresΩ(n) memory of qubits.

Proof: We prove this theorem by reducing the problem to an ap-
propriate communication complexity problem. Given an algorithm
as above that usess qubits memory, we describe a communication
protocol using onlys qubits communication.

Two stringsx andy are described in the communication complexity
problem before. Let|x| and|y| denote the numbers of 1’s ofx and
y. X is the sequence of length|x|+|y|, which contains all members
of the subset ofA whose characteristic vector isx, followed by all
members of the subset ofA whose characteristic vector isy.

Party A, with initial stateρ0 and stringx, runs the quantum algo-
rithm on the first|x| members ofX for estimatingF∞. The mem-
ory state evolves intoρ|x|. And then, it passes the content of the
memory to party B knowingy, which continues processing the next
|y| elements. Finally, the memory state reachesρ|x|+|y|. By mea-
suring this final state, we obtain the value ofY . According to the
result, Party B outputs “disjoint”(0) if and only if Y is smaller than
4/3, otherwise “not disjoint”(1). Obviously, this Y value should be
correct with a probability above1 − ε, because the true value of
F∞ is 1 if the sets are disjoint, and 2 otherwise.

Generalized by the result of quantum communication complexity
which has already been proven, at leastΩ(n) qubits are required
for one-round communication. So the theorem holds.

4. FUTURE WORK
In section 3.2, we proved that the lower bound of the space com-
plexity for computing the most frequent item in the data stream is
Ω(n), which is the same complexity as in the traditional algorithms
[1]. This result indicates that the quantum mechanism does not im-
prove the lower bound towards the exact solution of finding the
most frequent item. However,in classical settings, we can reduce
the space requirement substantially by approximating the original
problem. Under various approximation conditions, researchers ob-
tained different lower bounds of the space complexity and accuracy
loss. Therefore, the future work, as well as our hope, lies in the pos-
sibility of reducing space requirements and improving the accuracy
using smart relaxation techniques under the quantum mechanism.

5. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of

approximating the frequency moments.STOC’96, 1996.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems.Invited paper in
PODS 2002.

[3] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs.
classical communication and computation.
arXiv:quant-ph/9802040v2, Mar 1998.

[4] E. D. Demaine, A. Lpez-Ortiz, and J. I. Munro. Frequency
estimation of internet packet streams with limited space.
Proceedings of the 10th Annual European Symposium on
Algorithms, pages 348–360, 2002.

[5] F. le Gall. Exponential separation of quantum and classical
online space complexity.SPAA’06, pages 67–73, July- Aug
2006.

[6] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient
computation of frequent and top-k elements in data streams.
In ICDT, pages 398–412, 2005.

[7] P. W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. InFOCS, pages 124–134, 1994.

[8] A. Yao. Quantum circuit complexity.FOCS, pages 352–361,
1993.

4

Policy-Driven Separation for Systems-on-a-Chip
Ted Huffmire

ArchLab
huffmire@cs.ucsb.edu

Tim Sherwood
ArchLab

sherwood@cs.ucsb.edu

ABSTRACT
Many embedded applications are implemented on systems-on-a-
chip (SoCs) that contain multiple interacting components that may
operate at different trust levels and clearance levels. These
components typically share resources such as memory. For
example, a SoC might contain two CPU cores, a Crypto core, and
a DSP core, all sharing memory. A similar example is a multi-
core processor in which different cores operate at different levels
of security. Our goal is to make sure that cores share resources
nicely by developing efficient hardware mechanisms.

Providing separation among these modules is a crucial security
primitive. Separation is the enforcing of the legal sharing of a
resource such as memory among multiple cores. Suppose Alice
works for Company A, and Bob works for Company B. Alice’s
core must not be able to obtain the data of Bob’s core and vice-
versa.

The easiest way of providing separation is to implement each core
on its own physically distributed chip. However, physical
separation makes it impossible to realize the cost savings of
increased integration. Another option is to implement the
separation in software. Separation kernels [1] use software
virtualization to provide each application with the same level of
isolation it would have with its own physically distributed
processor. The disadvantage of this approach is that there is extra
overhead associated with providing virtualization. In addition, the
design complexity of modern out-of-order microprocessors makes
it difficult to implement separation kernels with a verifiable level
of trust. Furthermore, since separation kernels are a software-
based scheme, they will not work for embedded applications that
lack code and a program counter.

Standard memory protection, which relies on a page table to
prevent processes from accessing memory outside their assigned
virtual address space, is not a workable solution for embedded
systems either. In standard memory protection, if a process
attempts to access memory outside this range, a page fault occurs,
and the process is terminated. Since standard memory protection
was never designed with rigorous security as a design
requirement, it is inadequate for applications that need to be able
to handle multiple levels of classified data. Moreover, many
embedded systems do not have a disk, operating system, page
table, or TLB. Mondrian memory protection [2] provides memory
protection at the granularity of a word rather than a page, but it
suffers from the same problem.

An alternative way of providing separation is to use a reference
monitor that enforces the legal sharing of memory. It is possible to
design a system in hardware in which every memory access must
be approved as legal by a reference monitor that enforces a
memory access policy that every core on chip must obey. This
approach combines the cost savings of increased integration
without the overhead of software complexity. Reference monitors
are not new; in fact, they belong to the class of enforcement
mechanisms known as execution monitors [3]. However, our

formulation of reference monitors in the embedded domain is
new.

Our approach uses a specialized compiler to translate a memory
access policy expressed in a specialized language to a table format
that can be represented by a memory tile. This memory tile can be
loaded onto a SoC, and the reference monitor enforces the policy
specified by this tile. Our language specifies which modules
(subjects) have which access rights to which ranges of memory
(objects).

Figure 1 shows an example of a simple isolation scenario.
Module1 and Module2 are in separate compartments. Module1 can
only access (read from or write to) Range1, and Module2 can only
access Range2. This scenario would be expressed in our language
as the following:

Access{Module1,rw,Range1}|{Module2,rw,Range2};

Policy(Access)*;

Our policy compiler, which was made with the help of Lex and
Yacc, converts this policy to a regular expression. Next, the
compiler converts the regular expression to an NFA, and then it
converts the NFA to a minimized DFA. Finally, the DFA is
converted to a table format that can be loaded onto a special
memory tile located on the chip. Our reference monitor enforces
the policy specified by the memory tile.

In addition to isolation, our policy language is powerful enough to
express a variety of classic security scenarios, including both
stateless (fixed) and stateful (transitional) policies. Our language-
based approach provides flexibility because changing a policy is
much easier than redesigning by hand a reference monitor
expressed in a hardware description language.

Systems often need to be designed to be responsive to external
events. For example, if the system comes under attack, it makes
sense to change from a less restrictive memory sharing policy to a
more restrictive policy. A mechanism that can dynamically switch
the policy enforced by the reference monitor is needed to achieve
this goal. We call this mechanism a configuration manager.

Module1

Range1

Compartment 1

rw
Module2

Range2

Compartment 2

rw

 Figure 1: An isolation policy.

5

The design of a configuration manager involves many interesting
questions. Since area is at a premium, it is impossible to store
every possible policy on a chip. We will make the following
assumptions: that policy switching is rare, that we always switch
to a more restrictive policy, and that the number of policies to
switch between is small. All we need to do is have additional
memory tiles for the different policies, and a simple hardware
mechanism to tell the reference monitor which tile to use. The
configuration manager will need to obey a meta-policy that
specifies the conditions under which switching can occur and
which core has the authority to perform a policy switch. A more
sophisticated implementation will use a hot-swappable design in
which one tile contains the active policy, and another tile is used
for loading a new policy.

The fact that every memory access must go through the reference
monitor raises an import issue. Multiple simultaneous memory
references will have to be serialized, negatively affecting system
performance. It is possible to overcome this problem by
implementing several independent, distributed reference monitors
that enforce the same policy. In the case of a stateless policy, all
that is necessary is to duplicate the reference monitors, but in the
case of a stateful policy, the distributed reference monitors will
need to communicate with each other so that they are all in the
same state.

Our policy language is designed with the restriction that it is only
as powerful as a regular expression. This restriction exists because
we are translating the policy to a DFA, which is equivalent to a
regular expression. There may be some Turing-complete security
policies that we cannot express in our language. Is there a way for
us to modify our design in order to enforce a larger class of
policies?

In any security technology, usability is a key concern. The
reference monitor is only as good as the policy it is enforcing.
Engineers need to be able to construct precise policies.
Unfortunately, our memory access language is a relatively low-
level language, and working in this language is prone to error. We
must design a higher-level language for expressing concepts such
as isolation and controlled sharing, and we must design a compiler
to translate this high-level language into our low-level memory
access language.

In addition to being usable, good security technology also must be
low-cost. Our policy compiler can generate reference monitors
that are efficient in terms of area and cycle time, but we must
analyze the overall system performance of a realistic embedded
application that uses our reference monitor approach. We plan to
apply phase classification, which has been successful at analyzing
systems in the microprocessor domain, to the embedded domain.
Phase analysis classifies the repeating behavior of computer
programs, and it enables more accurate simulation. Since phases
repeat, it is unnecessary to perform the detailed simulation of a
phase when it reoccurs. We plan to leverage this to our advantage
in the quantitative analysis of our security methods.

Building such a realistic embedded application will force us to
confront several issues related to the architecture of our security
methods. For example, we must make sure that modules cannot
spoof their identities and therefore confuse the reference monitor.
We must also figure out how to make sure that every memory

access goes through the reference monitor. We must determine the
interface between the cores and the memory controller, and we
must figure out how the reference monitor will connect to the
memory controller. In addition, circuit elements can have values
of 0, 1, X (undefined), and Z (high impedance line). In fact, there
are around a dozen different values that have been discovered.
However, security works in the binary domain (0 or 1). These
different values (X, Z, etc.) could affect the security of any
hardware security approach.

REFERENCES

[1] John Rushby. Design and Verification of Secure Systems.
ACM Operating Systems Review, Vol. 15, No. 5, pp. 12-21,
December 1981.

[2] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory
protection. In Tenth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), San Jose, CA, October
2002.

[3] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security, 3(1),
February 2000.

6

IQU: Practical Queue-Based User Association
Management for WLANs

Amit P. Jardosh, Kimaya Mittal, Krishna N. Ramachandran
Elizabeth M. Belding, and Kevin C. Almeroth

MOMENT Lab and NMSL, Department of Computer Science, UC Santa Barbara

{amitj,kimaya,krishna,ebelding,almeroth}@cs.ucsb.edu

1WLANs are indispensable for providing Internet access to users
at locations such as universities, corporate offices, conferences, air-
ports, and coffee shops. Many of these environments often experi-
ence flash crowds, which we define to be a sudden surge in the num-
ber of users simultaneously attempting to access the WLAN. When
flash crowds occur, WLANs are likely to suffer from destructive
interference, excessive channel load, and unsustainable packet pro-
cessing at access points (APs). These conditions lead to a plethora
of problems, such as a deterioration in network throughput,heavy
packet loss, intermittent connectivity, overwhelmed APs,and some-
times, a network collapse.

To verify these claims, we present two case studies of opera-
tional WLANs that experienced the aforementioned problems. The
two WLANs each consisted of over 100 APs and more than 1000
simultaneous users, deployed at recently held 62nd and 64th Inter-
net Engineering Task Force (IETF) meetings [7]. In the first case
study, a high concentration of users in adjacent rooms led tofre-
quent packet collisions and detrimental interference. As aresult,
users experienced unusably low throughputs. Figure 1 showsthe
per-user throughput of each user during a one-second interval ver-
sus the number of instantaneous users during the same one-second
interval. We observe from the figure that as the number of active
users increases from 1 per second to 80 per second, the per-user
throughput decreases significantly. In the second case study, users
failed to establish associations with any APs due to either frequent
packet collisions or excessive, unsustainable packet processing at
the APs. The repeated association attempts made by users resulted
in high control packet overhead, compounding the problem. The
channels and the APs could not sustain such heavy workloads.The
result was sparse or no connectivity for users in the networkand
eventual network collapse.

The connectivity and usage problems experienced by users at
these events are not unique. Similar problems often occur inother
scenarios, particularly those that are prone to high user concentra-
tions, such as conferences and conventions. We predict that, as the
popularity of WLANs continues to increase, these problems will
become even more frequent and widespread and WLANs will have
a greater need to handle flash crowds and large user concentrations.

As a result, an effective solution to manage a large number of
users in a WLAN is imperative. The solution should not only avoid
network breakdown, but also ensure connectivity and high user
throughput. Several approaches to manage heavily loaded WLANs
have been presented and evaluated in previous work. These ap-
proaches can be classified into four categories:over-provisioning,
selective dropping[3], load balancing[2, 4, 8] andtraffic shap-
ing [5, 10]. Each category has its benefits and can marginally im-

1A complete version of this research has been recently accepted as
a conference publication [6].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120

P
er

-u
se

r
th

ro
ug

hp
ut

 (
M

bp
s)

Number of users

Figure 1: Per-user throughput.

prove performance during a flash crowd. However, they each have
drawbacks as well. Over-provisioning is expensive, inefficient and
limited by bandwidth availability, while selective dropping may
lead to starvation of some users. Balancing load among neighbor-
ing APs is of limited help when the total load is high enough to
overwhelm all APs in the vicinity. Traffic shaping limits individual
throughput in order to accommodate all users, and therefore, when
the number of simultaneous users is very high, traffic shaping alone
may result in unacceptably poor performance for most users.

WLANs that need to support a large number of users are thus
in critical need of a practical and effective system to handle heavy
loads and flash crowds. In this paper, we proposeIQU, a practi-
cal queue-based user association management system for heavily
loaded WLANs. The premise of user association management is
to control the frequency and duration of user associations with the
network when the number of users trying to access the networkis
greater than what the network can support. IQU maintains a queue
of users requesting network access. Only as many users as canbe
simultaneously accommodated are granted access to the network.
Any remaining users wait for admission in a queue. Admitted users
are assigned periods of access, calledwork-periods, within which
they can execute any network-related tasks. If the network is under-
loaded, the user queue will be empty and users can continue toac-
cess the network even after their work-period expires. In a heavy
load situation, the expiration of the work-period causes the user to
be disassociated from the network and placed back into the queue.
A different user from the head of the queue is then admitted into the
network. Users with network access are updated with their remain-
ing work period so that they can plan their network-related tasks
accordingly2. Similarly, users waiting in the queue are given esti-

2Applications designed for disconnected operation [9] can also
leverage this information.

7

0 60 120 180 240
0

200

400

600

800

1000

1200

U
se

r
th

ro
ug

hp
ut

 (
K

bp
s)

0 60 120 180 240 300 360 420
0

200

400

600

800

1000

1200

Time (Seconds)

U
se

r
th

ro
ug

hp
ut

 (
K

bp
s)

1 2 3 4 5 6 7

(a)

(b)

Figure 2: (a) Client throughput without IQU. (b) Client
throughput with IQU.

mates of their wait time for network access and the duration of the
work period they will be granted. Thus, unlike the scenariospre-
sented in our case studies, there is no uncertainty about theavail-
ability of network access. This information prevents usersfrom
making repeated unsuccessful association attempts, thereby both
reducing network overhead and considerably improving userexpe-
rience.

IQU is a simple and powerful system for managing heavily load-
ed WLANs. However, IQU changes the basic access model to
which today’s WLAN users are accustomed. In heavily-loaded
WLANs, IQU requires users to wait in a queue for access. More-
over, when access is granted, users must complete their network-
related tasks within an alloted work period. This is a significant
change from the current model of obtaining immediate accessfor
unlimited durations of time. However, we believe that this change
is inevitable in order to maintain good performance in a heavily-
loaded WLAN. Moreover, we believe that the new model is intu-
itive and easy to understand. Users can be made aware of theiras-
signed wait periods and work periods via a networking utility on the
user’s device. Note that the new access model may bring aboutun-
precedented alterations in typical user behavior; for instance, users
may generate traffic more quickly so that they can complete their
tasks in the assigned work period.

To evaluate our system, we built a prototype of IQU and tested
it on a testbed consisting of 8 Linux laptops (three IBM Thinkpads
and five Toshiba Satellite laptops) equipped with Atheros chipset
IEEE 802.11a/b/g wireless network cards. One laptop is configured
to act as a wireless AP, while the remaining act as WLAN clients.
The goal of this testbed is to convincingly demonstrate the practi-
cality of an association management system such as IQU, as well
as IQU’s benefits in a real system. The AP and client laptops are
placed within direct transmission range of each other. The wire-
less network cards are managed by the MADWiFi driver, which
is a Linux kernel device driver module for Atheros-based WLAN
devices [1]. We implement the IQU prototype by appropriately
modifying this driver. For our experiments, we configure thewire-
less cards to use the IEEE 802.11b protocol and fix the data rate at
11 Mbps. We disable the RTS/CTS collision avoidance mechanism
and MAC layer retransmissions. The impact of various IQU param-
eters on system performance is explored, and appropriate values for
the parameters are identified.

We use our testbed to emulate a flash crowd and heavy load
conditions. While three out of the seven clients maintain a UDP
flow level of 200 Kbps in both directions combined, the remain-
ing four clients simultaneously initiate UDP flow levels of 1Mbps
at the beginning of each experiment. Each UDP session lasts for
four minutes. This traffic configuration emulates a flash crowd and
heavy load conditions as observed in our case studies. Note that the
four-minute durations do not include the time spent waitingin the
user queue.

Figures 2(a) and 2(b) show the throughput achieved by each of
the 7 clients without IQU enabled and with IQU enabled, respec-
tively. In Figure 2(a) we observe significant losses and variations
in the average individual throughput of all seven clients. This re-
sult clearly demonstrates the detrimental effect of a flash crowd and
heavy load on network performance when IQU is not enabled. On
the other hand, in Figure 2(b), we observe that IQU successfully
controls the number of associated users such that, when admitted,
each associated user’s throughput close to the offered load.

Although IQU improves throughput during a flash crowd or high
network load, the disadvantage is that it takes longer to service the
clients in the network. This can be observed from the x-axis limits
in Figures 2(a) and 2(b). The extent of increase in service time de-
pends on the choice of parameter values and network traffic condi-
tions. We argue that longer service times are an acceptable tradeoff
for network administrators and users to avoid grossly unacceptable
network performance or network collapse.

Due to its elegance and effectiveness, user association manage-
ment has far-ranging implications as a tool for managing limited
resources in sophisticated WLANs. It coalesces the benefitsof
over-provisioning, selective dropping, load balancing and traffic
shaping, while avoiding their drawbacks. We believe that our work
creates new directions for further research in this area. Different
strategies can be explored for managing the user queue. Although
we use a simple FIFO queue in this paper, priority-based queues
may also be used to support different network access policies. De-
termination of the optimal number of users that may be permitted to
simultaneously access the network and accurate estimationof user
wait periods are other parts of this system that have potential for
further exploration and research.

REFERENCES
[1] Multiband Atheros Driver for Wireless Fidelity (MADWiFi). http://madwifi.org.
[2] A. Balachandran, P. Bahl, and G. Voelker. Hot-Spot Congestion Relief in Public

Area Wireless Networks. InIEEE WMCSA, Monterey, CA, Oct 2002.
[3] A. Barbaresi, S. Barberis, and P. Goria. Admission Control Policy for WLAN

Systems based on the Capacity Region. InIST Mobile Summit, Dresden,
Germany, Jun 2005.

[4] Y. Bejerano, S. Han, and L. Li. Fairness and Load Balancing in Wireless LANs
Using Association Control. InACM Mobicom, Philadelphia, PA, Sep 2004.

[5] C. Chiasserini and R. Rao. Performance of IEEE 802.11 WLANs in a Bluetooth
Environment. InIEEE WCNC, Chicago, IL, Sep 2000.

[6] A. P. Jardosh, K. Mittal, K. N. Ramachandran, E. M. Belding and K. C.
Almeroth. IQU: Practical Queue-Based User Association Management for
WLANs. To appear inACM Mobicom, Los Angeles, CA, Sep 2006.

[7] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-Royer.
Understanding Congestion in IEEE 802.11b Wireless Networks. InUSENIX
IMC, Berkeley, CA, Oct 2005.

[8] A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. Arbaugh. A
Client-driven Approach for Channel Management in WirelessLANs. In IEEE
Infocom, Barcelona, Spain, Apr 2006.

[9] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting Weak
Connectivity for Mobile File Access. InACM SOSP, Copper Mountain, CO,
Dec 1995.

[10] M. Portoles, Z. Zhong, and S. Choi. IEEE 802.11 DownlinkTraffic Shaping
Scheme for Multi-User Service Enhancement. InIEEE PIMRC, Beijing, China,
Sep 2003.

8

Application Specific Linux (ASL) ∗

Lamia Youseff Rich Wolski Chandra Krintz

Department of Computer Science
University of California, Santa Barbara
{lyouseff, rich, ckrintz}@cs.ucsb.edu

1. SUMMARY
Linux has emerged as the system-of-choice in academic and pro-
duction scientific computing settings. A key limitation to the use
of Linux for high-end cluster computing however is its potential
performance impact on application execution, since Linux dictate
general policies that do not promote the performance of high-end
scientific applications.

In this abstract, we are presenting our Application SpecificLinux
(ASL), a customized Linux image that enhances the performance of
the scientific applications. Our Research end-goal is a software sys-
tem that automatically enables high performance scientificcomput-
ing on commodity systems through application-specific customiza-
tion and dynamic adaptation of the Linux OS. Our research is novel
in that it combines the research done in OS specialization, ex-
tensibility and minimization as well as virtual machine monitors
(VMMs) into a system that automatically customizes the kernel im-
age for a single application run and is specifically focused on the
application domain of scientific computing using high-performance
clusters.

2. EXTENDED ABSTRACT
Recent advances in high-performance processor and networktech-
nologies are making clusters of workstation class computers cost-
effective platforms that can support the next generation ofscien-
tific applications. Low per-unit cost, advances in computing and
communication power, and the availability of Linux as a free, easy-
to-use, and nearly standard operating system, make high-end com-
puting with these systems accessible both to a very large developer
base and to a wide range of users. As part of this evolution, Linux
has emerged as a nearly ubiquitous, open-source operating system
with a wide-range of readily available programming supporttools
and specialized libraries. It is currently the system-of-choice in
academic and production scientific computing settings and as a re-
sult, many -if not the majority of- scientific programmers, being
trained today are familiar with Linux as a development platform.
Moreover, its ability to be used as a locally controlled, high re-
sponsive development environment has greatly increased the pro-
grammer productivity, hence the advancement of science.

A key limitation to the use of Linux for high-end cluster comput-
ing however is its potential performance impact on application ex-
ecution [3]. Linux, like other general-purpose operating systems
(GPOS) with commercial application, continues to evolve tosup-
port an enormous range of user requirements, application domains,

9∗This work is sponsored in part by grant from the National Science
Foundation (ST-HEC-0444412).

and devices (everything from supercomputers to hand-helds). In
contrast, scientific applications executing in clustered settings are
frequently large, resource intensive, long-running, and use space-
sharing to gain exclusive access to the machines they use through a
batch system. They do not compete dynamically for processorand
I/O resources like many other application domains. Therefore, the
Linux OS includes many features and built-in policies that do not
promote the performance of high-end scientific applications, which
can retard the performance of scientific programs in high-end com-
puting settings. In particular, scientific applications typically do not
require the extensive support for fair resource sharing (since they
execute in production space-shared, and not time-shared, environ-
ments) or quick response time (since they may not be interactive).
None the less, the portability that Linux affords combined with the
familiarity that its wide-spread popularity has bred make it a de
facto standard operating system for clustered architectures.

In our Research, we are designingApplicationSpecificLinux (ASL)
to enhance the performance of Linux for scientific applications[4].
The goal of our research is to investigate techniques that maintain
the ease-of-use and cost benefits of Linux while enhancing the per-
formance achievable by high-end scientific applications executing
in large-scale cluster computing settings. To enable this,we are
studying ways to automatically customize the Linux instance an
application uses when it is running in a “production” (i.e.,non-
development or debugging) setting based on the specific needs of
the application itself. We are also exploiting the exclusive pro-
cessor access that batch-scheduling implements to relax orelimi-
nate unneeded mechanisms that are designed to facilitate effective
time-sharing, but which introduce unnecessary overhead ina space-
sharing context.

We are using both runtime and compile-time approaches to cus-
tomize the Linux instance used by each application. Each of which
will allow the scientific programmer to use unmodified Linux as a
local development and debugging environment and then to apply
our techniques as an additional compilation step before initiating
high-end cluster execution.

In order to enable Linux customization, our system consistsof
four logical customization phases. Static and dynamic applica-
tion analysis is our system’s first phase. The application aswell
as its potential coupling effect on the kernel is studied using Phases
profiling techniques as well as kernel performance-annotated call
graphs. The second phase is the static customization enhance-
ments for the kernel image based on the outcome from the first
phase, which is produced at the development site. For example, we
studied in [7] the I/O pattern for MIT General Circulation Model

9

(a) (b)

H/W

Operating System

Application

H/W

Host OS (Xen VMM)

Guest OS (domU)

Application

Kernel Adaptation
syscall

K
er

ne
l

S
pa

ce
U

se
r

S
pa

ce

K
ernel

S
pace

U
ser

S
pace

Figure 1: Deployment model for current scientific applications
in (a) versus our deployment model using Xen VMM in (b).

(GCM) [5], which is a popular numerical simulation used by scien-
tists to study oceanographic and climatologic phenomena. For this
specific MIT GCM code I/O pattern, the syswrite() syscall was
modified to enhance the application performance. The staticcus-
tomization phases furthermore include inlining the application code
inside the kernel image to reduce the user to kernel space crossing
overhead, as well as inlining some kernel modules and creating
execution shortcuts in the kernel for enhanced performanceof the
common execution scenarios for the application, as shown infig-
ure 1(b). The customized Linux image (including the application)
is then shipped to the production environment.

The third phase takes place at the production environment, where
ASL is deployed on a minimal virtual machine monitor (VMM),
as shown in figure 1(b). This approach allows us also to introduce
unsafe kernel customization while protecting volatile hardware re-
sources (e.g. BIOS code). In order to ensure the feasibilityof our
approach, we have evaluated the performance implication ofrun-
ning HPC performance-oriented codes on virtual machines in[6].
We opt to deploy paravirtualized VM, in which the guest OS is
aware of being virtualized. Paravirtualization is characterized by
its minimal performance degradation on application execution, rel-
ative to full virtualization. Figure 2 shows the performance com-
parison between four kernels for several NAS [1] Parallel Bench-
mark (NPB) codes, on a 16 processor cluster. CHAOS [2] is an
HPC performance oriented kernel developed at Lawrence Liver-
more National Lab (LLNL). Xen kernel is a paravirtualized 2.6.12
kernel. The two RHEL kernels are off-the-shelf Red Hat Enter-
prise Linux version 2.6.9 and 2.9.12 respectively. In this figure,
they-axis shows the performance of different codes on thex-axis,
relative to Livermore’s CHAOS kernel. Using the averages illus-
trated here and several statistical techniques, we were able to em-
pirically prove minimal performance degradation for paravirtual-
ized systems. A comprehensive performance evaluation of paravir-
tualization in HPC should be found in [6].

During the execution of the application, the ASL is self evolving
and dynamically adopting system which keeps modifying itself to
meet the application’s requirements at runtime and enhanceits per-
formance. Meanwhile, ASL provides a kernel adaptation system
call that the user can interact with to suggest dynamic adaptation of
the system during runtime. This dynamic customization constitute
our final customization phase.

Much prior work in the area of application-specific operating sys-
tems (OSs) has thoroughly studied extensibility, specialization, and
minimization of the OS in general. However, our research is novel
in that it combines and extends these efforts into a system that auto-
matically customizes the Linux operating system for a single appli-

0.8

0.9

1

1.1

1.2

EP IS MG LU CG EP IS MG LU CG

P
er

fo
rm

an
ce

 in
 ti

m
e

an
d

to
ta

l M
op

s
re

la
tiv

e
to

 C
H

A
O

S
 k

er
ne

l

CHAOS kernel
Xen kernel
RHEL269 kernel
RHEL2612 kernel

Total Time Total Mops

Figure 2: NAS Parallel Benchmark performance relative to
CHAOS. The left half (first benchmark set) is for total time
(lower is better); the right half is for Mops (higher is better).

cation run and is specifically focused on the application domain of
scientific computing using high-performance clusters. At the same
time, our use of Linux ensures that the environment for scientific
applications developers remains familiar and unified across the de-
velopment and production platforms they use; thereby promoting
ease-of-use, programmer productivity, and efficient program man-
agement. Our Research’s end-goal is a software system that auto-
matically enables high performance scientific computing oncom-
modity systems through application-specific customization and dy-
namic adaptation of a low-cost, popular, and familiar Linuxoper-
ating system.

9

3. REFERENCES
[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo,

and M. Yarrow. The NAS Parallel Benchmarks 2.0.The
International Journal of Supercomputer Applications, 1995.

[2] CHAOS Project.http://www.cs.umd.edu/
projects/hpsl/ResearchAreas/PerfPred.htm.

[3] R. Gioiosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare.
Analysis of System Overhead on Parallel Computers. InThe
4th IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT 2004), Roma, Italy,
December 2004. Available fromhttp://www.c3.lanl.
gov/∼fabrizio/papers/isspit04.pdf.

[4] C. Krintz and R. Wolski. Using Phase Behavior in Scientific
Application to Guide Linux Operating System Customization.
In Workshop on Next Generation Software at IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), April 2005.

[5] J. Marotzke and R. G. et al. Construction of the adjoint MIT
ocean general circulation model and application to Atlantic
heat transport sensitivity.Journal of Geophysical Research,
104(C12), 1999.

[6] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Paravirtualization for HPC Systems. InUnder submission to
SuperComputing (SC 06), 2006.

[7] L. Youseff, R. Wolski, and C. Krintz. Linux Kernel
Specialization for Scientific Application Performance.
Technical Report UCSB Technical Report 2005-29, Univ. of
California, Santa Barbara, Nov 2005.

10

Classification of Abnormal Activities in Video
Justin Muncaster

UCSB Computer Science Department

Four Eyes Lab

jmunk@cs.ucsb.edu

ABSTRACT

In multimedia computing the recognition of abnormal activities is

becoming a major area of research interest. With applications in

human-computer-interaction, elder care, security, and surveillance

there is a strong push for advances in our ability to recognize both

normal and abnormal activities at the semantic level. We use a

probabilistic, hierarchical representation of activities to do

recognition and provide an automatic way to define the low-level

states. We classify abnormal activities meaningfully in terms of

known high-level activities and show brief results of this work.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – probabilistic modeling.

General Terms
Algorithms, Design, Experimentation.

Keywords
Activity recognition, Bayesian networks, deterministic annealing.

1. INTRODUCTION
Activity recognition in video analytics has developed fast in

recent years. There are a wide range of applications of activity

recognition, including the monitoring of individuals within a

shopping store, office buildings, hospitals, and banks. A variety of

algorithms exist for processing of video sequences for key low-

level functions, such as motion detection and object tracking,

allowing one to identify simple activities such as walking or

running.

Recently researchers have shown interest in recognizing

complex behaviors in video at a higher semantic level (e.g.,

loitering, fighting). Such events typically require several sub

events that occur in sequence before the complex event can be

correctly decided. The decomposition of higher level events into

sequences of lower level events suggests a hierarchical

representation for events.

There are many papers that have tried to classify activities at

the semantic level. In [7], Hongeng et al. recognizes multi-state

activities using a hidden Markov model (HMM) and a particular

form of static Bayesian network; [8] defines a series of rules, e.g.

entry violation, escort, theft, possess, belong; Ryoo and Aggarwal

[9] uses a context-free grammer based representation to represent

composite actions and interactions. Duong et al. [10] use a

switching duration hierarchical semi-Markov movel (S-HSMM)

to model complex activities and they imposed Coxian distribution

for duration model of the states.

In our previous work [1] we defined a general hierarchical

framework in which to build models for activity recognition. We

propose a probabilistic model that exhibits hierarchy and accounts

for events of varying length. We also propose a way to

automatically define low-level events. We review those results

here and our method for recognizing abnormal activities within

this framework. We then conclude with future directions.

2. MODELING ACTIVITIES

2.1 Representing hierarchy
The hidden Markov model (HMM) and its extension called the

hierarchical hidden Markov model (HHMM) has been a powerful

tool in speech recognition [2,3]. In a HMM one models the state

of the system as a hidden random variable that probabilistically

switches from one state to another. This random variable also

probabilistically “emits” observations at each time slice. The

learning problem is one in which we wish to discover the

probabilities associated with this model using training data. The

inference problem is to compute the probability distribution of the

hidden variable given the test observations.

In a hierarchical hidden Markov model instead of emitting

observations the HHMM emits another “sub-HMM”, which can

in turn emit further HMMs. The observations are then based on

the states of each “level” and used to infer the state of the system.

In [3] the author showed that this model was a special case of a

dynamic Bayesian network (DBN) [3] and gave way how to

model both the HMM and the HHMM in the DBN framework.

In [1] we proposed a “bare-bones” representation of a hierarchical

system in the DBN framework, which omits the optional the

dependencies given in [3]. Figure 1a shows a 3-level bare-bones

hierarchical model. This isolates exactly what makes the model

hierarchical and casts all other dependencies as domain-specific.

This reduces the number of model parameters which is beneficial

for both learning and inference.

()1
1−tX

()1
tX

()1
1−tE

()2
1−tX

()2
1−tE

()2
tX

()1
tE

()2
tE

()3
1−tX

()3
1−tE

()3
tX

()3
tE

()1
1−tX

()1
tX

()1
1−tE

()2
1−tX

()2
1−tE

()2
tX

()1
tE

()2
tE

()3
1−tX

()3
1−tE

()3
tX

()3
tE

()1
1−tX

()1
1−tX

()1
tX
()1
tX

()1
1−tE

()1
1−tE

()2
1−tX

()2
1−tX

()2
1−tE

()2
1−tE

()2
tX
()2
tX

()1
tE
()1
tE

()2
tE
()2
tE

()3
1−tX

()3
1−tX

()3
1−tE

()3
1−tE

()3
tX
()3
tX

()3
tE
()3
tE

1

HL

t
X

−

HL

t
X

1

HL

t
E

−

1

LL

t
X

−

1

LL

t
E

−

LL

t
X

HL

t
E

LL

t
E

1

PH

t
X

−

1

PH

t
E

−

PH

t
X

PH

t
E

1

LL

t
Y

−

LL

t
Y

1

HL

t
X

−1

HL

t
X

−

HL

t
X HL

t
X

1

HL

t
E

−1

HL

t
E

−

1

LL

t
X

−1

LL

t
X

−

1

LL

t
E

−1

LL

t
E

−

LL

t
X LL

t
X

HL

t
EHL

t
E

LL

t
E LL

t
E

1

PH

t
X

−1

PH

t
X

−

1

PH

t
E

−1

PH

t
E

−

PH

t
X PH

t
X

PH

t
E PH

t
E

1

LL

t
Y

−1

LL

t
Y

−

LL

t
Y LL

t
Y

Figure 1 (a) The bare-bones HDBN as we defined it (b) The

actual model used in our experiments.

11

2.2 Defining low-level states
To define low-level states we take our observations and suppose

that they are generated from the low level activity state. We then

perform clustering using the deterministic annealing algorithm

[5], partitioning the feature space into discrete blocks. Each

cluster center corresponds to a low-level state of the model.

After we perform clustering we then fit a Gaussian to each cluster

center, giving us the probability density for our low-level

observations
LL

t
y ,

() ()Pr | ; ,
LL LL LL LL LL LL

t t t t k k
Y X k N= = =y y µ Σ ,

where
LL

k
µ is a mean vector and

LL

k
Σ is a covariance matrix.

3. EXPERIMENT

3.1 Data set
We tested our algorithm using the video clips of a shopping center

in Portugal that we found in [6]. We identify three high level

activities: Entering the shop, leaving the shop, and passing the

shop. For each video we also ran a tracker developed by [4] to

track people in the image plane. We randomly set aside 8 tracks

for training (3 entering, 3 leaving, 2 passing) and 6 tracks for

testing. We labeled each frame in the training data with the

appropriate high-level event.

We used a four-dimensional feature space: x-position, y-position,

x-velocity, y-velocity. The velocity estimate was done using fixed-

lag differences of the positions and all features were smoothed

with a Gaussian kernel. The training data points were then used to

compute the whitening matrix, which we used to normalize all

feature points.

We set up our model structure as shown in Figure 1b. In this

model
HL

t
X represents the high level activity at time t, and

HL

t
E

denotes whether the high level sequence has ended at time t.

There are analogous meanings for the low-level state (LL) and the

phase distribution (PH) which models the duration of the low-

level activity.

3.2 Results
Our results for normal activities are given in [1] and are

promising. In Figure 2 we show results for some abnormal

activities. In these activities we use data that is unlike any data

that we trained on.

In Figure 2 we have two video sequences with tracks that we

could not label with one of our high level events. These videos

both had the following behavior: A person would exit the store,

walking out and turning the corner. Next, the person would stop,

pause for a short time, and turn around and go right back into the

store. The trajectory of the person is unlike any trajectory seen in

our training data. However, as we can see in Figure 2, we are able

to infer a meaningful label for both tracks where this occurs.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frame

p
ro
b
ab
il
it
y

Entering

Leaving

Passing

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frame

p
ro
b
ab
il
it
y Entering

Leaving

Passing

 (a) (b)

Figure 2. Results for leaving and reentering.

The results of figure 7 also suggest that our duration model is

working effectively. Notice that the track in Figure 7a is shorter

(i.e., has fewer frames) than the track in Figure 7b. In fact, each

low-level event also occurred for a shorter period of time. We

believe that because the uncertainty associated with the duration

of a low level event is effectively modeled, we are able to handle

this case where events occur at different speeds.

4. CONCLUSION
In this work we have given a short synopsis of work done to

robustly classify abnormal activities in video. In future work we

wish to address the question regarding how to classify abnormal

sequences that bear little or no resemblance to any of our

predefined high level events. We are working on ways to augment

our model to be able to recognize such abnormal activities

automatically without having to rely on labeled data of abnormal

activities.

5. REFERENCES
[1] J. Muncaster and Y. Ma, Activity recognition using dynamic

Bayesian networks with automatic state selection, To be

submitted.

[2] S. Fine, Y. Singer, and N. Tishby. The hierarchical Hidden
Markov Model: Analysis and applications. Machine

Learning, 32:41, 1998.

[3] K. Murphy. Dynamic Bayesian Networks: Representation,

Inference, and Learning. Ph.D. thesis, UC Berkeley, 2002.

[4] Y. Ma and Q. Yu, Multiple hypothesis target tracking using

merge and split of graph’s nodes, ISVC 2006.

[5] K. Rose. Deterministic annealing for clustering,

compression, classification, regression, and related

optimization problems. Proceedings of the IEEE, 1998.

[6] http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1

[7] S. Hongeng, F. Bremond and R. Nevatia, "Bayesian

Framework for Video Surveillance Application", ICPR 2000,

Vol I, pp. 164-170, September 2000.

[8] V. D. Shet et al., “Multivalued Default Logic for Identity

Maintenance in Visual Surveillance” ECCV 2006.

[9] M. Ryoo and J. Aggarwal, Recognition of Composite Human

Activities through Context-Free Grammar Based

Representation, 1709- 1718, CVPR 2006.

[10] Duong et al., Activity recognition and abnormality detection

with the switching hidden semi-markov model, CVPR 2005

12

Application Testing and Analysis for Security

Greg Banks, Marco Cova, Viktoria Felmetsger, Richard Kemmerer, Giovanni Vigna
Reliable Software Group

{nomed,marco,rusvika,kemm,vigna}@cs.ucsb.edu

1. INTRODUCTION
In an ideal world, programs would be developed by experi-

enced programmers who possess solid security skills and who

follow sound methodologies. Unfortunately, in reality, ap-

plications are designed, developed, and deployed under strict

time constraints and with little emphasis on security. As a con-

sequence, vulnerabilities — exploitable locally, remotely, or

both — are discovered and publicly disclosed on a daily basis.

The impact of these vulnerabilities can be severe, and the cost

of correcting errors after an application has been deployed can

be very high.

To ameliorate these security problems, it is necessary to de-

velop tools and techniques to improve the security of applica-

tions. The most effective approach would be to provide mech-

anisms that can improve the software development cycle in

order to help all developers write solid security-aware code.

Unfortunately, this is not always possible. Instead, a second

line of defense, namely testing and auditing application code

for possible security problems, is frequently used.

In this paper we introduce two tools that we have devel-

oped to identify security-critical vulnerabilities in applications

for which source code might not be available. In Section 2

we introduce an automated testing technique, called fuzzing,

and present SNOOZE, a tool for building flexible, security-

oriented, network protocol fuzzers. In Section 3 we discuss

a tool that we implemented for static detection of vulnerabili-

ties in x86 executables. Finally, in Section 4 we discuss some

benefits and drawbacks of both approaches and highlight di-

rections for future work.

2. SNOOZE
Fuzzing is a well-known black-box approach to the security

testing of applications. Its basic idea is to provide a system

with unexpected, random, or faulty input with the purpose of

exposing corner cases that were not considered during imple-

mentation [3]. This technique has several benefits: first, it can

be applied to programs whose source code is not available;

second, it can be used on large applications; third, bugs found

with fuzzing are reachable through user input, and, as a conse-

Figure 1: Main components of SNOOZE.

quence, are exploitable.

As a result, a number of tools have taken this approach to

testing systems. However, in general, the ability to generate

input in a manner that is both unexpected or faulty and likely

to trigger a well-known, target-specific, attack (e.g., SQL in-

jection) is lacking. Furthermore, support for testing complex

applications that implement stateful protocols is generally ab-

sent. As a result, in [1] we proposed and implemented a pro-

totype of SNOOZE, an extensible tool for development of net-

work protocol fuzzers.

Figure 1 shows the high-level architecture of SNOOZE. The

Interpreter, the component responsible for running the tests,

takes as input a set of protocol specifications, a set of user-

13

defined fuzzing scenarios, and a module implementing sce-

nario primitives (i.e., operations to send or receive protocol

messages and navigate the state machine). A protocol specifi-

cation defines the general characteristics of a protocol, such as

the format of header fields and their default values, the syntax

of messages that can be exchanged in the protocol, and the al-

lowed message flows (i.e., a state machine). The default values

assigned to fields can be changed and additional fields can be

inserted through the use of the mutation primitives provided

by the Fault Injector component.

To fuzz an application a fuzzing scenario must be generated.

This scenario makes use of the primitives and protocol spec-

ifications already present in the tool. It simply encodes the

message sequence that it wants to be played with the server as

well as the type of fuzzing to be done on the messages in this

sequence.

We used SNOOZE to test several implementations of SIP,

a widely-used signaling protocol for VoIP applications, and

found several previously unknown vulnerabilities in an appli-

cation making use of one of these implementations.

3. A BINARY ANALYZER
In several cases, programs are distributed in binary-only for-

mat, e.g., to protect proprietary intellectual property. The exe-

cutable code of an application, however, often contains enough

information to determine whether the application contains vul-

nerabilities.

We explored this idea by building a tool that detects “tainted-

data-to-system” vulnerabilities in x86 executables. system()

is a function provided by the standard C library that spawns

a shell to evaluate its parameter and execute the associated

command(s). If the parameter content is under user control,

it could be used by an attacker to execute arbitrary commands

under the privileges of the vulnerable application. Thus, these

vulnerabilities are especially critical in SUID binaries and re-

motely-accessible applications.

We detect such vulnerabilities using binary analysis [5] and

static analysis techniques [4]. Binary analysis extracts use-

ful information from executable code. Static analysis predicts

safe and computable approximations of the behaviors that the

application could show at run-time. Using binary analysis,

we perform several tasks: we disassemble an executable, re-

construct its control flow graph (CFG), extract information re-

garding the library functions that it invokes, identify functions

through which untrusted (tainted) data is read into the program

and sensitive functions (e.g., system()) that should only use

trusted data. Using static analysis, we detect whether it is pos-

sible for tainted data to reach such sensitive functions. More

precisely, we use symbolic execution [2] to simulate execu-

tion along all feasible paths of the application using symbolic,

rather than concrete, inputs. This way, we compute the ap-

proximate behavior of the application with all possible input

values.

We used our tool to detect the use of tainted data in calls to

the system() function in several typical Linux utilities.

4. CONCLUSIONS
In this paper, we presented our experience with the problem

of automatically identifying security-relevant bugs in applica-

tions. We presented two orthogonal approaches to the solution

of this problem and two tools that implement them.

We discussed SNOOZE, a fuzzing-based tool for the test-

ing of network applications. SNOOZE employs a black-box,

dynamic approach, i.e., it does not assume any a priori knowl-

edge of the implementation details of an application and works

by testing a running instance of that application. Unlike ex-

isting fuzzers, it also provides methods to test applications

that implement complex, stateful protocols. The advantages

of this approach are that it is relatively simple to understand

and implement, yields no false positives, and allows a tester to

quickly find “shallow” bugs. However, similar to other testing

methodologies, it cannot provide any guarantee of finding all

bugs existing in an application.

Second, we presented a tool that detects taint-style vulnera-

bilities in x86 executables. It uses a white-box approach, thus

requiring the binary image of an application to be available;

it is static in that it does not require one to actually run the

application under test; finally, it is based on tracking the flow

of tainted data through a program. This approach performs

a more thorough analysis of an application and, therefore, is

capable of detecting “deep” bugs that are difficult to uncover

through testing. However, it requires a non-trivial infrastruc-

ture to be built. In addition, it is dependent on the specific

implementation details of an application and requires the use

of several heuristics to make the problem tractable.

In the future, we intend to explore how static and dynamic

approaches can be combined to maximize each other’s strengths

and minimize limitations. Currently, we are also investigating

how other analysis techniques, such as model checking, can

be applied to finding security problems in applications.

5. REFERENCES
[1] G. Banks, M. Cova, V. Felmetsger, K. Almeroth,

R. Kemmerer, and G. Vigna. Snooze: toward a stateful

network protocol fuzzer. In In Proceedings of the 9th

Information Security Conference, 2006.

[2] J. C. King. Symbolic Execution and Program Testing.

Communications of the ACM, 19(7):385–394, 1976.

[3] B. P. Miller, L. Fredriksen, and B. So. An empirical study

of the reliability of unix utilities. Communications of the

ACM, 33(12):32–44, 1990.

[4] F. Nielson, H. R. Nielson, and C. Hankin. Principles of

Program Analysis. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1999.

[5] T. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum.

Next-Generation Platform for Analyzing Executables. In

Proc. of the 3rd Asian Symposium on Programming

Languages and Systems, 2005.

14

Simulation of Large Scale Sensor Network

Ye Wen
University of California, Santa Barbara

wenye@cs.ucsb.edu

Rich Wolski
University of California, Santa Barbara

rich@cs.ucsb.edu

ABSTRACT
Simulation is an effective tool for developing, evaluatingand an-
alyzing sensor network applications, especially when deploying a
large scale sensor network remains an expensive and labor inten-
sive endeavor. In this short paper, we describe our current work on
the simulation of large scale sensor networks. More specifically,
we introduce the DiSenS (DIstributed SENsor network Simulation)
system – a distributed software infrastructure for scalable sensor
network simulation. We also discuss how different sensor devices
can be coordinately simulated in the infrastructure to support the
simulation of heterogeneous sensor network. At the end, we briefly
discuss some on-going and possible future work of our project.

1. INTRODUCTION
Sensor networks make possible the instrumentation and actuation
of potentially a large variety of environmental phenomena.By
making the provisioning of computing power non-invasive and in-
expensive, the ability to apply computation as a way of analyzing
“the world” ubiquitously becomes a possibility, the potential im-
pact of which cannot be overstated.

However, despite the potential for transformative scientific and even
social change that sensor networks seem to promise, their devel-
opment is, at present, still nascent. While various technological
and economic obstacles exist, a key impediment to their develop-
ment is the lack of a scalable simulation capability that provides
the fidelity necessary to support both coherent design and efficient
engineering of sensor network systems. State-of-the-art sensor net-
work research and development relies on labor and resource inten-
sive trial-and-error using physical devices andin situ deployments.
Few other systems of similar complexity and potential expense
(e.g. computational processors, embedded systems, network ar-
chitectures, etc.) are investigated and engineered in the same way:
without high-quality and multi-fidelity simulation support.

To accelerate possible research and development advances for sen-
sor networks, our work focuses on the development of a sensor
network simulation capability in the form of DiSenS – a distributed
software infrastructure for scalable sensor network simulation. DiS-

enS is intended to serve as a research tool for the development of
simulation models targeting different fidelity levels, andto allow
these investigations to take place at scales unattained by previous
systems.

Previous works including discrete-event sensor network simulation
systems and full-system sensor network simulators have made big
effort to address the similar problem. However, none of themis
without limitations in achieving both scalability and fidelity. Discrete-
event systems such as those described in [2, 4, 8] model device
functionality and communication as a set of partially ordered events
modifying distributed state. Often, these systems have focused
on communication interactions (which takes place via unreliable
and difficult-to-model communication radios) and only roughly ap-
proximate the behavior of the constituent devices themselves. By
sacrificing device fidelity, discrete event simulators can achieve
very high performance and scale well. Full-system simulators [6,
10, 5] take an alternative approach. They simulate the internal de-
vice functionality in detail and allow ensemble behavior toemerge
from the interactions of independent-but-communicating simulated
devices. These systems achieve sufficient fidelity levels, but the
need to coordinate multiple simulated devices has limited their scal-
ability.

Our work attempts to extract and combine the benefits of both ap-
proaches. DiSenS supports high-fidelity and high-performance em-
ulation of individual sensor devices as well as radio communication
simulation that scales. The infrastructure is designed to use dedi-
cated clusters of commodity “PC” class machines interconnected
by high-performance local-area networking technology (heretofore
termed “cluster computing” technology).

Our work also tries to extend the simulation system to support het-
erogeneous devices. At the current stage, DiSenS is able to simu-
late the basic sensor device, i.e. motes (including both Mica2 and
MicaZ) and the intermediate sensor device, Stargate, with cycle-
closeness. These different devices are simulated coordinately in
accordance to their relative speed to achieve the overall fidelity and
performance of a heterogeneous sensor network.

2. SCALABLE SIMULATION OF LARGE
SCALE SENSOR NETWORK

At the core of DiSenS is a hardware emulator with extensive sup-
port for various popular sensor network devices. In the current
implementation, we emulate the mote [3] devices (the Mica2 and
MicaZ platforms), Stargate devices [7], and iPAQ devices [1] and
we are adding the support of other devices, like Telos [9]. Thus, the
system is capable of heterogeneous sensor network simulations. As

15

the basis for accurate simulations, the hardware emulator provides
cycle-accuracy (for motes) or cycle-closeness (for Stargate) simu-
lation.

The hardware emulator is able to be parameterized by a set of plug-
gable fidelity enhancing models, e.g. radio model, power model,
etc., to allow experimentation with different fidelity levels and modes
of investigation.

Given the fidelity provided by the full-system simulation function-
ality, our primary goal is then to scalablly simulate “large” ensem-
bles of sensor nodes so that potential problems of scale can be
studied. The way we approach this problem is to use computer
cluster to distributedly simulate a large set of emulated device in-
stances and the radio communication among them. The challenge
is then how to efficiently coordinate the simulation progress for
each emulated device in a distributed memory system with large
message passing latency. DiSenS uses a peer-to-peer simulation
design: each device is emulated in a separated thread and keeps its
own clock. The individual node simulation threads are then glued
together by a simple and efficient synchronization protocol, which
makes the complete simulation scalable to a large size of distributed
computation resources. To further efficiently use the computing re-
sources, we also apply the state-to-art graph partition algorithm to
distribute the sensor nodes among computation hosts intelligently
to achieve the optimal performance.

As the result, using commodity cluster hardware, DiSenS cansim-
ulate one node approximately9 times faster than real time speed,
160 nodes in real time speed using16 dual-processor machines and
8192 nodes at nearly tenth of real time speed, which is32 times of
that reported previously [2]. Figure 1 shows the scalability of the
simulation of sensor networks for both1-D and2-D topologies on
a 16-node cluster in our lab.

Total number of nodes

N
or

m
al

iz
ed

 s
im

ul
at

ed
 c

lo
ck

 s
pe

ed

1 2 4 8 16 32 64 128 256 512 1024

0.
01

0.
10

1.
00

10
.0

0

one dimension
two dimensions

Figure 1: Best performance comparison of 1-D and 2-D topol-
ogy on a 16-node cluster. X-axis is total number of nodes sim-
ulated. The Y -axis is normalized performance.

3. FUTURE WORK
The initial work on DiSenS lays the foundation for a lot of exciting
possible extensions and applications. One of our current on-going
works is to study the statistical properties of radio transmission of
sensor networks and incorporate them into the simulation frame-

work, so that efficient and accurate network simulation is possible.
We are also trying to build a sophiscated sensor network applica-
tion development environment upon DiSenS to utilize its fidelity,
scalability and flexibility.

As the future work, we want to extend the distributed simulation
framework to support the simulation in a heterogeneous computa-
tion environment, like Grid environment, to explore the possibility
of massive sensor network simulation. We are also thinking about
coupling the simulation with actual hardware deployment, so that
virtuality and reality can enhance each other.

4. REFERENCES
[1] iPAQ devices.http://welcome.hp.com/country/us/en/

prodserv/handheld.html.

[2] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications.ACM
Conference on Embedded Networked Sensor Systems, Nov. 2003.

[3] Mote hardware platform.
http://www.tinyos.net/scoop/special/hardware.

[4] S. Park, A. Savvides, and M. B. Srivastava. SensorSim: a simulation
framework for sensor networks.ACM International workshop on
Modeling, analysis and simulation of wireless and mobile systems,
pages 104–111, 2000.

[5] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras.ATEMU:
A Fine-grained Sensor Network Simulator.IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and
Networks, 2004.

[6] Simulavr: A simulator for the Amtel AVR processor family.
http://www.nongnu.org/simulavr.

[7] Stargate: a platform X project.
http://platformx.sourceforge.net/.

[8] S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Environment
and Network Simulator.The IEEE 37th Annual Simulation
Symposium, 2004.

[9] Moteiv Corporation. Telos Sensor Network Module.
http://www.moteiv.com/.

[10] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable Sensor
Network Simulation with Precise Timing.The Fourth International
Symposium on Information Processing in Sensor Networks, Apr.
2005.

16

A Sketch Interface to Aid 3D Scene Reconstruction

Jonathan Ventura
Four Eyes Lab

jventura@cs.ucsb.edu

1. INTRODUCTION
The main challenge of scene reconstruction is to synthesize
new views of a scene using photographs as input. Previ-
ously researched methods require varying levels of user in-
put.

The “Tour into the Picture” (TIP) system allows a user to
work in the two-dimensional space of a single photograph
to achieve a three-dimensional reconstruction [5]. This re-
construction models the scene as a box, much like a dio-
rama. The user places the vanishing point and an “inner
rectangle” indicating the back wall of the box, along with
rectangles indicating foreground objects. To reconstruct the
scene, the photograph is projected onto the box and fore-
ground objects. This system has several disadvantages. The
correct placement of the vanishing point is not always obvi-
ous in photographs without a visible horizon. In addition,
the system requires an alpha mask for the foreground ob-
jects, and a separate retouched photograph in which the
foreground objects have been removed, to fill in the pixels
behind popped-up foreground objects. Thus the system is
not completely contained in the user interface.

A later system, “Automatic Photo Pop-Up,” presents a first
attempt at a fully automatic reconstruction system, using
a TIP-style approach [4]. The system must be trained on
a collection of hand-segmented images, and in practice has
been shown to correctly segment and reconstruct only about
30% of input images. More work is needed before a fully-
automatic system can be robust enough to be practical for
a wide variety of typical images.

A compromise approach is needed which incorporates user
input intelligently by leveraging information in the photo-
graph. Our goal is a fast system which is easy to use and
learn. To this end, we propose a semi-automatic scene re-
construction method for a single photograph which uses a
gestural interface as user input. This gestural system uses
image features in several ways in order to lessen the the
cognitive load on the user. Because strokes on the image

form the only input to the system, it is easily adaptable to
a tablet display with a pen device for input.

2. PROPOSED METHOD
We propose a simplified scene model suggested by [6] which
is more general than that of TIP or Automatic Photo Pop-
Up. This scene model assumes that the photograph consists
of (i) a ground plane which meets the sky at the horizon
and (ii) foreground objects in the form of planes or boxes
protruding from that ground plane.

2.1 Vanishing Line
The first step in fitting the scene model to an image is de-
termination of the ground plane. In this system, we find the
ground plane by the horizon, or vanishing line.

As illustrated in figure 1, we assume that the top corners of
the image (points 1 and 2) and the intersection points of the
vanishing line with the image boundaries (points 3 and 4)
are far away, and that the bottom two corners of the image
(points 5 and 6) are points on the ground plane intersecting
with the image plane. Points 1 - 4 are ideal points of their
respective projected points on the image plane, and points
5 - 6 intersect the image plane. The equations to find the
coordinates of the points and the parameters of the ground
plane are given in [6].

The simplest method of specifying the vanishing line is for
the user to explicitly draw the vanishing line with one stroke.
However, if a horizon line is not clearly visible in the im-
age, the correct placement of the vanishing line may not
be obvious to the user. In these cases the user may prefer
to specify a rectangle on the ground plane. The system will
then extend the sides of this rectangle to find their vanishing
points, and connect these points to determine the vanishing
line. Alternatively, the user may specify at least two pairs of
parallel lines, which can be similarly extended to determine
the vanishing line.

2.2 Foreground Objects
Once we have determined the ground plane, we would like
to “pop up” foreground objects such as walls and people.
Two to three strokes are needed for this gesture. The first
stroke is along the ground plane, indicating the width of the
object on the ground. The second stroke is up along the
side of the object, indicating the height of the object off of
the ground. If desired, a third stroke along the ground plane
can be supplied to indicate the object’s depth. Without this

17

third stroke, the object is assumed to be planar (having no
depth).

Figure 2 shows a sample scene with two background walls,
two foreground objects, and no clear horizon. Strokes have
been placed on the image to indicate typical gestures that
would be used to mark up the scene. To specify a stroke, the
user clicks and drags the mouse or pen from one endpoint
of the line to the other. First, a rectangle has been traced
on the hardwood floor, allowing the system to find the van-
ishing line. Next, the background walls have been traced
using two strokes each, one on the floor, and one along the
corner of the room. The lamp is modeled as a planar object
by using two strokes to give width and height. The chair is
modeled as a box by giving three strokes for width, height,
and depth.

3. IMPLEMENTATION AND EVALUATION
The system is implemented in C++ using OpenGL. Two
modes are available to the user: an editing mode, where
strokes on the image are translated into gestures; and a re-
construction mode, where a synthesized view of the scene
can be repositioned in real-time.

3.1 Gestures
A single stroke consists of clicking, dragging, and releasing
the mouse or pen device. Several strokes in succession con-
stitute a gesture. When the first stroke is received, the sys-
tem starts a new gesture. Each following stroke is added to
that gesture. If, after, a certain amount of time (in our sys-
tem, two seconds), no more strokes are received, the gesture
is considered finished. At that time the system attempts to
parse the gesture.

If the gesture has only one stroke, it is assumed to be indi-
cating the vanishing line, so the system extends the line to
the borders of the image and recalculates the ground plane.
If the gesture has four strokes, then the system assumes that
two pairs of parallel lines on the floor are being indicated.
In this case the lines are extended to find vanishing points
and from there the vanishing line is updated.

A gesture with two strokes is assumed to be indicating a pla-
nar object. The first stroke on the ground plane determines
the plane of the object. To find this, we cast rays from the
origin through the image plane at the stroke endpoints to
the ground plane. The two intersection points on the ground
plane along with the ground plane normal determine the ob-
ject plane. Then we cast rays through the endpoints of the
second stroke to the object plane to determine the height of
the object.

A gesture with three strokes indicates a box object. The
system follows the same behavior as for two strokes, and
then uses the third stroke to determine object depth. This
is done by finding the location of the third stroke on the
ground plane (using ray casting), and extruding the object
plane along that stroke.

3.2 Conclusions and Future Work
The goal of our system is a fast and intuitive interface for
scene reconstruction on a single photograph, suitable for a

tablet display. To this end we avoided any use of the key-
board or multiple mouse buttons for input. We also wanted
to avoid traditional GUI elements such as windows, menus,
or dialog boxes, and tried to only display the image and
visual feedback on top of it.

Some properties of our design hinder its effectiveness as a
fast and intuitive interface. The user must allow time be-
tween gestures, because the system has no indication for
the end of a gesture other than a time delay. This could be
improved by the introduction of a stroke or set of strokes
to indicate the end of a gesture. Also, because the sys-
tem differentiates gestures only by their number of strokes,
we have not allowed for the addition of new gestures which
use the same number of strokes as one of the existing ges-
tures. To this end we would like a more sophisticated way
of differentiating gestures which looks at the nature of the
stroke.

A second goal of our system is that we wanted to use image
analysis as a second form of input, in order to reduce the
amount of user input needed and improve the reconstruction
quality (see figure 3). This goal is not met by our current
implementation; however, we have two ideas we would like
to pursue in this direction. The first is to incorporate image
segmentation [7] and region filling [1] techniques which can
automatically segment and remove a foreground object and
fill in the missing background behind it, eliminating the need
for the alpha mask and retouched image used in TIP (see
figure 4). The second is to incorporate edge-snapping tech-
niques [3]. This would allow for strokes to be aligned with
lines in the image, which would make some gestures (such as
the rectangle on the floor) easier and more accurate.

4. REFERENCES
[1] Criminisi, A., Pérez, P., and Toyama, K. Region

filling and object removal by exemplar-based image
inpainting. IEEE Transactions on Image Processing 13,
9 (September 2004).

[2] Debevec, P. E., Taylor, C. J., and Malik, J.
Modeling and rendering architecture from photographs.
In SIGGRAPH (1996).

[3] Gleicher, M. Image snapping. In SIGGRAPH (1995).

[4] Hoiem, D., Efros, A. A., and Hebert, M.
Automatic photo pop-up. In SIGGRAPH (2005).

[5] Horry, Y., Anjyo, K.-I., and Arai, K. Tour into
the picture: using a spidery mesh interface to make
animation from a single image. In SIGGRAPH (1997).

[6] Kang, H. W., and Shin, S. Y. Extended rendering:
Tour into the picture using a vanishing line and its
extension to panoramic images. In Computer Graphics
Forum (2001), vol. 20.

[7] Rother, C., Kolmogorov, V., and Blake, A.
Grabcut: Interactive foreground extraction using
iterated graph cuts. In ACM Trans. on Graphics
(SIGGRAPH’04) (2004).

18

H. Kang, S. Pyo, K. Anjyo, and S. Shin / Tour Into the Picture using a Vanishing Line and its Extension to Panoramic Images

horizon appears in the landscape image, the region below

the horizon corresponds to the object plane.

3.2. Model construction

Our modeling scheme is different from the spidery mesh in

that it is based on the vanishing line rather than the vanishing

point in the image. With the new scheme, a vanishing line in

the input image is interactively specified by a user, and the

image is then divided by the vanishing line into two disjoint

regions. The region below the vanishing line in the image

corresponds to the object plane in the 3D environment, and

that above the vanishing line corresponds to the space above

the object plane. This space contains no objects that occlude

another ones after all the foreground objects are extracted

from the input image. Hence this space can be thought of

as a plane of infinite distance. Based on this observation,

we construct a background model with two planes (called a

‘ground plane’ and a ‘back plane’) corresponding to the two

regions in the image separated by the vanishing line (Fig. 4).

1

5’

back plane

2’
4’

6’

3’

6

1’

5

2 4

3

ground plane

vanishing point

(b) 3D polygons(a) 2D image

vanishing line

Figure 4: new background model

In Fig. 5, vertices 1− 4 are the four corners of the image

and vertices 5 and 6 are the intersection points of the vanish-

ing line with the image boundary. To render the background

model, the 3D coordinates of the vertices of the model must

be computed. For easy computation, we assume that the

camera is positioned at the origin, the view direction is to-

wards +z, the view-up vector is towards +y, and the focal

length of the camera is d.

image

5

6

3

1

(=2’)

z=d

back plane (at infinity)

(=4’)

background model

z

4

x

ground plane

3’

5’

y

2

(camera)

6’

1’

O

Figure 5: Vertex coordinates of the new background model

The vertices 1− 6 of the image have the following coor-

dinates in the image plane:

1 : (xL, y1, d), 2 : (xL, y2, d), 3 : (xR, y3, d)
4 : (xR, y4, d), 5 : (xL, y5, d), 6 : (xR, y6, d)

where xL and xR are the x-coordinates of the left and the

right border of the image, respectively. Vertices 2′ and 4′ in

the background model coincide with corner vertices 2 and 4,

at the bottom of the image respectively. The rest of vertices,

1′, 3′, 5′, and 6′ are respectively the ideal points in the di-

rections from the viewpoint to the corresponding vertices, 1,

3, 5, and 6 in the image. For example, vertex 3′ is assigned

a homogeneous coordinate (xR, y3, d,0) since this vertex is

an ideal point in the direction from the origin to the vertex

3 in the image. Similarly, the homogeneous coordinates of

each vertex in the background model are given. Thus, the

coordinates of each vertex in the background model are:

1′ : (xL, y1, d,0), 2′ : (xL, y2, d,1), 3′ : (xR, y3, d,0)
4′ : (xR, y4, d,1), 5′ : (xL, y5, d,0), 6′ : (xR, y6, d,0)

With these vertex coordinates, the equation for each plane

of the background model can be obtained. The plane that

contains a point p = (x1,x2,x3,x4) satisfies

π1x1 +π2x2 +π3x3 +π4x4 = 0.

Let the coordinates of the three distinct points q, r, s
be (q1,q2,q3,q4), (r1, r2, r3, r4), (s1, s2, s3, s4), respectively.

Then, the coefficients of the plane containing these points

are computed as follows:

π1 =

∣∣∣∣∣∣

q2 q3 q4

r2 r3 r4
s2 s3 s4

∣∣∣∣∣∣
, π2 = −

∣∣∣∣∣∣

q1 q3 q4

r1 r3 r4
s1 s3 s4

∣∣∣∣∣∣
,

π3 =

∣∣∣∣∣∣

q1 q2 q4

r1 r2 r4
s1 s2 s4

∣∣∣∣∣∣
, π4 = −

∣∣∣∣∣∣

q1 q2 q3

r1 r2 r3
s1 s2 s3

∣∣∣∣∣∣
.

Using the above equations, the ‘ground plane’ is com-

puted from vertices 2′, 4′, 5′ (or 6′), and the ‘back plane’

is computed from vertices 1′, 3′, 5′ (or 6′). The resulting

plane equations are used for constructing the scene model

and for rendering, which will be discussed in Section 4, and

5, respectively.

3.3. Discussion

Based on projective geometry, our scheme is simple and yet

general enough to cover a broader class of images than that

of Horry et al. For a one-point perspective image, the left

wall, the right wall, and the ceiling, constructed by the stan-

dard spidery mesh, can be modeled as foreground objects

with our scheme. For a perspective image with two vanishing

points, our scheme is still applicable since those points lie on

a vanishing line. As mentioned in Section 2, the simplified

spidery mesh of Horry et al. is used for an image that has

no clearly identified vanishing point. This simplified spidery

mesh looks similar to our modeling scheme since both of the

resulting background models consist of only two quadran-

gles. That is, the rear wall and the floor of their model look

similar to back and ground planes of our model, respectively.

c© The Eurographics Association and Blackwell Publishers 2001.

Figure 1: The vanishing line in image space and reconstruction space. Figure from Kang, et al.

Figure 2: A sample image with gestures for vanishing line, two walls, and two foreground objects.

Figure 3: Three synthesized views of the scene from figure 2: a) The reconstruction without the foreground
objects. b) The primitives used to model the scene. c) The reconstruction with foreground objects. Image
segmentation and inpainting techniques could be used to remove artifacts.

Figure 4: An image generated using a hand-made foreground mask and retouched background image. We
would like to be able to produce these supplemental images semi-automatically.

19

Analyzing the Phase Behavior of the Circadian Clock in
Arabidopsis thaliana

Stephanie R. Taylor
Computational Science and

Engineering Lab/Doyle Group
Department of Computer Science

staylor@cs.ucsb.edu

Francis J. Doyle III
Doyle Group

Department of Chemical Engineering

frank.doyle@icb.ucsb.edu

Linda R. Petzold
Computational Science and

Engineering Lab
Department of Computer Science

petzold@cs.ucsb.edu

ABSTRACT
In this paper, we utilize the impulse phase response curve as a
tool to investigate the timing behavior of mathematical models of
oscillatory systems. We analyze two models of a plant circadian
clock and demonstrate that the key target for improvement is the
mechanism for light perception.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: biology and genetics

General Terms
Algorithms, Measurement, Experimentation

Keywords
systems biology, gene regulatory network, sensitivity analysis,
limit cycle oscillator, circadian clock, Arabidopsis thaliana

1. INTRODUCTION
Animals and plants follow a nearly 24-hour cycle of behavior that
is controlled by an internal clock which, in turn, is entrained to its
environment [2]. The clock mechanisms for animals such as fruit
flies and rodents have been studied extensively and are
reasonably well-understood. Biological experimentation and
mathematical models have been used to elucidate many of the
mechanisms involved in the regulation of their circadian rhythm.
Study of the plant clock is at a much earlier stage. Although
evolution has conserved some aspects of the clock across
kingdoms - all have interlocked feedback loops (including
negative feedback), we cannot simply co-opt the models for
animals and search for analogous genes/proteins in plants. One
aspect that is not common across kingdoms is the mammalian
master clock, which resides in the hypothalamus and regulates the
clocks in other organs. Because plants have no such master clock,
and because they are rooted to the ground and cannot flee from
unfriendly environments, the individual clocks in cells must be
robust to changes in environmental perturbations such as light
intensity and temperature change [4].

2. MATHEMATICAL MODELS
Model development is part of an iterative process; as new clock
components are identified and incorporated into our conceptual
model, they must, in turn, be incorporated into the mathematical
model. Then, through model simulation, we can assess our
conceptual understanding of the mechanisms involved. We use
sensitivity analysis to determine the robustness of different model

architectures and to streamline these model-development
iterations.

Recent work has produced a sequence of candidate mathematical
models [6, 8] of the circadian clock in the plant Arabidopsis
thaliana. Like other clock models, each candidate i) consists of a
set of ordinary differential equations that show stable oscillations
in constant conditions, and ii) has incorporated into it a
mechanism for light to enter and entrain the system to its
environment. The system is represented mathematically as

 (,)=x f x p

where x is the vector of states, and p is the vector of parameters.

The present work analyzes the most sophisticated of the models
[8] (see Figure 1); they correctly predict the results of several
gene knock-out experiments [3].

3. PHASE RESPONSE CURVES
Sensitivity analysis quantifies the change in behavior of a system
in response to a disturbance. Classical sensitivity analysis
computes the overall impact of a parametric perturbation on the
system. Oscillatory systems have characteristics, such as period,
phase, and morphology (the shape of the limit cycle), which may
be sensitive to parametric perturbations. For plant circadian
clocks, the timing of physiological events (such as flowering),

Figure 1. Schematics of the modeled gene regulatory
network. a) Model A. Light enters the system through

multiple pathways. In this model, light affects the
transcription of gene Y both as a pulse at dawn and as a
continuous stream. b) Model B. The layout is identical,

with the exception that there is no pulsatile affect of light
on the system. The two models share identical ordinary

differential equations (with the noted exception), but
have differing parameter sets.

a) b)

21

must coincide with the appropriate time of day. The plant must
be able to adjust its behavior to environmental cues such as
changing seasons (and lengthening of daylight) - we say the phase
of the plant behavior must coincide with the phase of the day.
Since the timing of events is of such importance, in order to fully
understand the mechanism of the clock we must understand how
its sub-networks influence such timing. To do that, we utilize the
impulse phase response curve (IPRC) we formulated in [7, 8].
Typically, PRC’s are computed experimentally by applying a
pulse of light to a free-running oscillator, which is then allowed to
settle. Once the system has settled, we measure its phase shift in
reference to an unperturbed system. Using the isochron-based
phase sensitivity introduced by Kramer et al. [5], we determine
the phase response curves for all parameters and states in a
mathematical model. This is inexpensive to compute, requiring
only one forward solve (of the system and its sensitivity
equations) and one backward solve (of the adjoint equation).

4. ANALYSIS
For each model, we compute the parametric IPRC and the state
IPRC (see Figure 2). When examining light, we expect it i) to
have the strongest effect upon the system, but that it ii) will not
completely dominate the system. For Model A, we find criterion
ii) is violated because the system timing is ultra-sensitive to light.
We perform a numerical experiment, computing the traditional
PRC, and find that the system is reset to dawn whenever it
encounters a pulse of light (data not shown). This verifies our
insight that light has too strong an effect on the system. For
Model B, we observe that light no longer has the strongest
influence, thereby violating criterion i). To investigate the

mechanisms of the autonomous oscillator, we turn to the state
IPRC’s. For Model A, the states with the greatest effect upon the
timing are those associated with LHY/CCA1 and PRR7,
indicating the negative feedback loop involving them is the core
mechanism behind the oscillations. For Model B, we see a
dramatic difference - TOC1 and Y dominate the timing. In fact,
Model B shows stable oscillations when LHY/CCA1 is removed
(data not shown). Since biological experiments indicate that
LHY/CCA1 is imperative for oscillations [1], intuition leads us to
conclude that Model B’s lack of dependence on LHY/CCA1 is
unrealistic.

The high sensitivity of Model A to light and the relatively low
sensitivity of Model B to light indicate that our understanding of
the system’s light perceiving mechanisms is inadequate. In
addition, the behavior of LHY/CCA1 is affected by light [1], and
Model B misrepresents LHY/CCA1. This strengthens the
argument that the next generation model must include more
detailed information about light perception.

5. ACKNOWLEDGMENTS
Melanie Zeilinger and Eva Farre played instrumental roles. This
work was supported by the Institute for Collaborative
Biotechnologies through grant DAAD19-03-D-0004 from the
U.S. Army Research Office (FJD) and IGERT NSF grant DGE02-
21715 (LRP).

6. REFERENCES
[1] D. Alabadi, M.J. Yanovsky, P. Mas, S.L. Harmer, and S.A.

Kay. Critical role for CCA1 and LHY in maintaining
circadian rhythmicity in Arabidopsis. Curr Biol, 12(9);757-
761, Apr 2002.

[2] J.C. Dunlap, J.J. Loros, and P.J. DeCoursey, editors.
Chronobiology: Biological Timekeeping. Sinauer Associates,
Inc. Publishers, Sunderland, MA, USA, 2004.

[3] E.M. Farre, S.L. Harmer, F.G. Harmon, M.J. Yanovsky, and
S.A. Kay. Overlapping and distinct roles of PRR7 and PRR9
in the Arabidopsis circadian clock. Curr Biol, 15(1):47–54,
Jan 2005.

[4] A.J.W. Hall and H.G. McWatters, editors. Endogenous Plant
Rhythms. Blackwell Publishing Ltd, 2005.

[5] M.A. Kramer, H. Rabitz, and J. Calo. Sensitivity analysis of
oscillatory systems. Appl. Math. Mod., 8:328–340, 1984.

[6] J.C. Locke, M.M. Southern, L. Kozma-Bognar, V. Hibberd,
P.E. Brown, M.S. Turner, and A.J. Millar. Extension of a
genetic network model by iterative experimentation and
mathematical analysis. Mol. Systems Biol, 1, (2005).

[7] Taylor, S.R., Doyle III, F.J., Petzold, L.R., Phased and
confused? A primer on isochrons, phase sensitivity, and
PRC’s. in preparation.

[8] M.N. Zeilinger, E.M. Farre, S.R. Taylor, S.A. Kay, and F.J.
Doyle III. A novel computational model of the circadian
clock in Arabidopsis that incorporates PRR7 and PRR9. Mol.
Systems Biol., accepted.

Figure 2. IPRC’s. a) Parametric IPRC for Model A. The
thick line represents the timing effects of light - an effect

dwarfing that of all others. b) Parametric IPRC for
Model B. The thick line represents the timing effects of
light, which is much less severe. c) State IPRC for Model

A. The thick lines represent LHY/CCA1 and PRR7
mRNA and protein – the negative feedback loop between
these entities has the most control of the timing. d) State
IPRC for Model B. The thick lines represent TOC1 and
Y mRNA and protein. Their large magnitude indicates

that negative feedback loop between TOC1 and Y
completely dominates the timing.

a) b)

d) c)

22

