
GSWC 2007

Proceedings of
The Second Annual Graduate

Student Workshop on Computing

September 28th, 2007
Santa Barbara, California

Sponsored by

http://www.google.com
Department of Computer Science & Corporate Affiliates Program

University of California, Santa Barbara
http://www.cs.ucsb.edu, http://www.industry.ucsb.edu

http://www.google.com/
http://www.cs.ucsb.edu/
http://www.industry.ucsb.edu/

GSWC 2007

Proceedings of
The Second Annual Graduate

Student Workshop on Computing

September 28th, 2007
Santa Barbara, California

Sponsored by

http://www.google.com
Department of Computer Science & Corporate Affiliates Program

University of California, Santa Barbara
http://www.cs.ucsb.edu, http://www.industry.ucsb.edu

http://www.google.com/
http://www.cs.ucsb.edu/
http://www.industry.ucsb.edu/

 ii

 iii

Message from the Workshop Chairs

It is our pleasure to welcome you to the Second Annual Graduate Student Workshop on Computing
(GSWC), a symposium bringing together researchers from various disciplines of Computer
Science at the University of California, Santa Barbara.

The GSWC began in 2006 with the goal of providing exposure to the wide-ranging research
endeavors of our department's brilliant graduate students. Papers for this conference are
selected first and foremost on their technical quality, but are also reviewed for clarity and
presentation. This year, the program committee selected 10 papers for inclusion in the
workshop – at an acceptance rate of 34% – reflecting the high quality of research within our
department. Additionally, we have organized a poster session in which a select group of
graduate students will present their work. The committee has chosen 12 posters, providing
flavors from a diverse breadth of research.

It takes a large, dedicated team to put together a successful workshop like the GSWC. We
would like to thank our program committee members who devoted time and attention to
selecting quality material for the workshop. We sincerely thank Google for their generous
sponsorship of the GSWC. Our department staff – particularly Greta Carl-Halle, Amanda
Hoagland and Julia Orr – was very responsive in offering technical and organizational
support. The department chair, Professor Amr El Abbadi, has always been there to support
our efforts and offer his assistance. We owe tremendous thanks to Andrew Elliot and Kelly
Bret for helping us plan and coordinate logistics, and to the Corporate Affiliates Program for
their support. Finally, we would like to thank Professor Fred Chong for offering us the
opportunity to organize this workshop.

We hope that you will enjoy participating in the Graduate Student Workshop on Computing
as much as we have enjoyed coordinating it. Here's to many more iterations of the GSWC
in the years to come.

Sincerely,
Susmit Biswas and Robert Gilbert

GSWC 2007 Committee Chairs

 iv

Table of Contents

GSWC 2007 Program Committee Members

v

GSWC 2007 Events Schedule

vi

Morning Session
• System Analysis through 3D-Integration

Shashidhar Mysore

1

• The structure and generation of Non-graded Finite Difference Octree
Grids
Vikram Aggarwal

3

• Environmental Tomography
Stacy Patterson

5

• Automated Size Analysis for Object-Oriented Systems
Fang Yu

7

• An Analysis of Shadows in Camera-Light Pairs and Its Application to
Multiflash Depth Edge Detection
Daniel A. Vaquero

9

Invited Talk
• Software at Google: Tolerance in the face of pretty much everything

Russell Quong

11

Afternoon Session
• Characterization of Error-Tolerant Applications while Protecting

Control Data
Susmit Biswas, Darshan D. Thaker , Diana Franklin, John Oliver, Derek
Lockhart, Tzvetan Metodi, Frederic T. Chong

12

• Anomaly-based Detection of State Violations in Web Applications
Marco Cova

14

• On the Representation and Multiplication of Sparse Matrices
Aydin Buluc

16

• Modeling and Simulation of Protein-Protein Interactions in the
Endoplasmic Reticulum
Marc Griesemer

18

• Searching for Rare Objects using Index Replication
Krishna Puttaswamy

20

• Evaluating the Impact of Xen on the Performance of NAS Parallel
Benchmarks
Lamia Youseff

22

 v

GSWC 2007 Program Committee Members

Committee Chairs: Susmit Biswas

 Robert Gilbert

Faculty Advisor: Frederic T. Chong

Committee Members: Matthew Allen

 Sorabh Gandhi

 Imran Patel

 Stacy Patterson

 Krishna Puttaswamy

 Irfan Sheriff

 Vishwakarma Singh

 Sunil Soman

 Mohit Tiwari

 Jason Wither

 Lamia Youseff

Administrative Support Greta Halle
Student Affairs Manager
Department of Computer Science, UCSB

 Amanda Hoagland
Graduate Program Coordinator
Department of Computer Science, UCSB

 Kelly Bret
Public Event Manager
College of Engineering, UCSB

 Andrew Elliott
Corporate Programs Manager
Engineering and the Sciences, UCSB

 vi

Workshop Schedule

8:45-9:00 Robert Gilbert
Program Chair Opening Remarks

Morning Session
9:00-9:15 Shashidhar Mysore System Analysis through 3D-Integration

9:15-9:30 Vikram Aggarwal The structure and generation of Non-graded Finite
Difference Octree Grids

9:30-9:45 Stacy Patterson Environmental Tomography

9:45-10:00 Fang Yu Automated Size Analysis for Object-Oriented
Systems

10:00-10:15 Daniel A. Vaquero
An Analysis of Shadows in Camera-Light Pairs and
Its Application to Multiflash Depth Edge Detection

10:15-10:30 Break

10:30-11:30 Russell Quong,
Invited Speaker

Software at Google: Tolerance in the face of pretty
much everything

11:30-1:00 Poster Session
Lunch Poster Presentations

Afternoon Session

1:00-1:15 Marco Cova Anomaly-based Detection of State Violations in
Web Applications

1:15-1:30 Aydin Buluc On the Representation and Multiplication of Sparse
Matrices

1:30-1:45 Marc Griesemer Modeling and Simulation of Protein-Protein
Interactions in the Endoplasmic Reticulum

1:45-2:00 Krishna
Puttaswamy Searching for Rare Objects using Index Replication

2:00-2:15 Lamia Youseff Evaluating the Impact of Xen on the Performance
of NAS Parallel Benchmarks

2:15-2:30 Amr El Abbadi
Department Chair Closing Remarks

System Analysis through 3D-Integration

Shashidhar Mysore, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin,
Kaustav Banerjee, Timothy Sherwood

Department of Computer Science and Department of ECE
University of California, Santa Barbara

{shashimc,banit,sherwood}@cs.ucsb.edu, {navins, sclin, kaustav}@ece.ucsb.edu

ABSTRACT

While the number of transistors on a chip increases exponen-
tially over time, the productivity that can be realized from
these systems has not kept pace. To deal with the complex-
ity of modern systems, software developers are increasingly
dependent on specialized development tools such as security
profilers, memory leak identifiers, data flight recorders, and
dynamic type analysis. Reducing the performance penalty
and complexity of these software tools is critical to those de-
veloping next generation applications, and many researchers
have proposed adding specialized hardware to assist in pro-
filing and introspection. Unfortunately, while this additional
hardware would be incredibly beneficial to developers, the
cost of this hardware must be paid on every single die that
is manufactured. In this article we summarize our findings
from a longer article [6] and argue that a new way to at-
tack this problem is with the addition of specialized analy-
sis hardware stacked vertically with the processor die using
3D-interconnect. This provides a modular “snap-on” func-
tionality that could be included with developer systems, and
omitted from consumer systems to keep the cost impact to
a minimum.

1. 3D Introspection Overview

Developing high quality software for a modern computer system
is no easy task. Performance critical applications are likely to ex-
ecute for quadrillions of instructions, operate in a complex envi-
ronment with multiple run-time components, and are increasingly
responsible for managing various architectural resources including
power and hardware threads. In order to battle this complexity,
developers are becoming more dependent on sophisticated soft-
ware analysis tools. While mixed static-dynamic analysis can be
done completely in software through binary instrumentation, the
amount of analysis that can be done at test-time is bounded by
the performance impact that can be tolerated. In long running
or interactive programs, this is especially critical. To enable run-
time analysis with low overhead many researchers have proposed
the development of specialized on-chip hardware modules that
can assist software developers in building more secure, more bug
free, and more efficient applications.

The primary goal of this article is to explore a new method
by which analysis functionality can be added to a processor.
Specifically, we propose a new and modular way to add anal-
ysis hardware to next generation processors through the use of
3D-interconnect. Several 3D-interconnect technologies, such as
inter-die vias, are currently being evaluated in industry as a means
of stacking multiple chips together. Some potential applications
include the stacking of DRAM or bigger cache directly onto the
processor die to alleviate memory pressure and designing stacked
chips of multiple processors. While the details of this technology
are more fully described in our paper [6], the main idea is that
two pieces of silicon are fused together to form a single chip, and
the two active layers of the silicon are connected through inter-

��� � � ���	� �
�� ��
 ���� ��� ����� �����

��� � � ����� ��
 ��� � �
 � � �

��� ��� �	��� !
�� � "�
 �

$%
& '$%
() %
*+ ,-, .
/

��� ��� ���	� �
�� ��
 ���� ��� ����� ��� �

0 132 4�576 8�2 4�9;:�6 <>= ? @ ? 135 A�2 87B3CD4�9;:�6 <>= ? @ ? 135

��� � � ����� �7
 ��� � �
 � � �

��� ��� �	��� !
�� ��"�
 �

E	F G H I�J K�L M�K�N O P!K�N Q�R3N I S H L H J T�U K V Q�N
W�XDYDZ3[\] ^`_>a�_�b ^�WD\ W
c�X�c�d�[^ec`d>a3\] d�[\ a�f
g _�b Z�Xih3[dDj \ b \ a�f

k _D] _�j b \ f�l�]�[X3Y�d�[k \ a�f

m n��
 � o � ��� p�q�� � �

��� � � ���	� �
�� ��
 ���� ��� ����� �����

��� � � ����� ��
 ��� � �
 � � �

��� ��� �	��� !
�� � "�
 �

$%
& '$%
() %
*+ ,-, .
/

��� ��� ���	� �
�� ��
 ���� ��� ����� ��� �

0 132 4�576 8�2 4�9;:�6 <>= ? @ ? 135 A�2 87B3CD4�9;:�6 <>= ? @ ? 135

��� � � ����� �7
 ��� � �
 � � �

��� ��� �	��� !
�� ��"�
 �

E	F G H I�J K�L M�K�N O P!K�N Q�R3N I S H L H J T�U K V Q�N
W�XDYDZ3[\] ^`_>a�_�b ^�WD\ W
c�X�c�d�[^ec`d>a3\] d�[\ a�f
g _�b Z�Xih3[dDj \ b \ a�f

k _D] _�j b \ f�l�]�[X3Y�d�[k \ a�f

W�XDYDZ3[\] ^`_>a�_�b ^�WD\ W
c�X�c�d�[^ec`d>a3\] d�[\ a�f
g _�b Z�Xih3[dDj \ b \ a�f

k _D] _�j b \ f�l�]�[X3Y�d�[k \ a�f

m n��
 � o � ��� p�q�� � �

Figure 1: The traditional approach to attacking
the hardware profiling problem involves integrating
specialized profiling functionality on the same die as
the processor. To gather information, long global
wires are required which necessarily cross multiple
functional blocks. To get high performance, buffers
or pipeline latches are required, which in turn re-
quire access to silicon which makes for a big mess.
Alternatively, in a stacked approach, only a single
buffer is required to drive the post up to the anal-
ysis layer (which would be an optional feature for
software developers)

die vias (called posts) which run vertically between them. This
ability to interconnect multiple active layers means that we can
consider optionally adding a layer to a processor specifically for
analysis which would have easy access to most of the important
signals of the system. A processor with this ability could be sold
to developers, while commodity systems would simply not include
this extra analysis layer.

This inter-chip 3D interconnect could take the form of any num-
ber of different competing technologies, including chip-bonding,
Multi-chip Modules (MCM) [4], chip-stacking with vias [3], or
even wireless superconnect [5]. While chip-bonding and MCM
technology are already used in a variety of embedded contexts [2],
more aggressive interconnect technologies are being heavily re-
searched by several major industrial consortiums.

Specifically, this article describes the potential of 3D intercon-
nect technology to enable new forms of introspective chips and
fully elaborate on some of the advantages of 3D introspection
over traditional hardware integration. In our original article [6],
we precisely quantify both the chip bandwidth requirements for
full introspection, and the relevant characteristics of 3D intercon-
nect technology. We further quantify the increase in area, the
interconnect overhead, and both the power and thermal impacts
of such a design. A brief description of some of the advantages
(more fully described and evaluated in the full paper) are:

1. Reducing Introspection Routing Problems - Instead of be-

1

ing forced to route performance data through other blocks,
inter-die vias can move data out of plane to a layer specially
constructed for gathering and analyzing run-time informa-
tion as illustrated in Figure 1.

2. Decoupling Developer Needs from End User Systems - We
advocate the sale of one type of processor which is always
fabricated with connections for hardware monitoring. The
difference between the system we sell to the consumer and
the one that is sold to the developer is only whether the
hardware monitor devices are actually stacked on top or
not.

3. Opening the Door to Heavy Weight Analysis - Stacking
a hardware monitor on top of the main processor is the
potential it has to open new avenues of research in heavy-
weight dynamic program analysis.

2. 3D Technology

This section gives a brief overview about the through-via 3D tech-
nology which we have used in our paper for evaluating our pro-
posal for a 3D introspection engine.

Manufacturing Posts Between Two Die - One popular
method of fabricating 3D integrated chips is to bond together
two fully processed wafers on which transistors and wires have
been fabricated, such that the wafers completely overlap. The top
wafer is first thinned to approximately 10-50µm. Optically ad-
justed bonding is then used to stick this layer to the bottom wafer
using an organic adhesive layer (2µm) of polyimide. After metal-
ization is done on both layers and prior to the bonding process,
electrical connections are needed between the two wafers. The
connection is made by inter-chip vias, which are etched through
the inter-metal-layer dielectric on the top wafer, the thinned top
Si wafer itself and through the cured adhesive layer. The inter-
chip vias are then formed in these etched holes using chemical
vapour deposited (CVD) tungsten which can withstand the high
temperatures (400oC) of the wafer bonding process. In a modern
process, these vertical interconnects typically have cross-sections
of 5µm x 5µm and height of 30-40 µm, whereas a normal metal
wire’s cross section is of the order of 1µm x 1µm [1]. We refer
to these inter-chip vias as posts. A second approach relies on
thermo-compression bonding between metal pads in each wafer.
In this case, Cu-Ta pads on both wafers serve as the electrical
contacts between the inter-chip vias on the top thinned Si wafer
and the uppermost interconnects on the bottom Si wafer. These
processes, as well as other processes (for 3D integration of VLSI
chips) are described in [2, 3].

3. Results and Conclusion

Enabling programmers and software developers to more easily
track down bugs, identify performance bottlenecks, and secure
their code against attacks needs to be one of the primary concerns
of system designers at all levels, including computer architects.
Even today, software bugs are so damaging and widespread that
they cost the U.S. economy an estimated $59.5 billion annually
(more than half a percent of the GNP). Although it is certainly
not possible to remove all errors, it is estimated that more than a
third of the cost associated with bugs could be eliminated through
an improved testing and analysis infrastructure [7]. The problem
of inefficient and buggy software is not going to be helped by the
fact that the amount of hardware complexity exposed to the pro-
grammer is growing rapidly on desktop and server machines in
the form of threading, parallelism, and complex application mid-
dleware. To cope with this complexity, and to ensure the quality
of software infrastructures, an increased reliance on sophisticated
software analysis and testing tools seems inevitable. Complex
pointer errors, memory leaks, race conditions, and performance
anomalies may manifest themselves during tests, but finding them
requires sifting through a sea of runtime data.

One of the biggest advantages of our approach is that the cost
of specialized analysis hardware is decoupled from the highly cost
sensitive consumer market. In doing so, users can still buy their
cheap high performance machines because the only extra hard-
ware they are paying for are stubs. The additional cost of the
hardware to perform online analysis, the cost of the interconnect
to route the performance data, and the cost of the complexity of
handling that global interconnect, are all eliminated. The hard-
ware stubs that are left increase area and power by no more than
0.021mm2 and 0.9% respectively, numbers which might be fur-
ther reduced with careful design. At the same time, developers
and users both benefit from the increased analysis power of dy-
namic monitoring tools. Even though our argument, like most
arguments in systems, is economic in nature, in the full paper [6]
we have used the metrics of area, power, routability, and tempera-
ture to quantify one possible design. While the thermal impact of
stacking two hot cores together is always a concern in 3D design,
we show that the effect is manageable for both our sample system
and for a system 8 times more powerful. Given that developers
would need to pay more for this additional hardware anyways,
the incremental cost of additional cooling should be a minor.

4. References
[1] International technology roadmap for semiconductors,

2001.
[2] Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, and

Krishna C. Saraswat. 3-D ICs: A Novel Chip Design for
Improving Deep Submicron Interconnect Performance
and Systems-on-Chip Integration. Proceedings of the
IEEE, 89(5):602–633, May 2001.

[3] Benkart et al. 3D Chip Stack Technology Using
Through-Chip Interconnects. IEEE Design and Test of
Computers, 22(6):512–518, Nov/Dec 2005.

[4] Claude Massit and Nicolas Gerard. Three-dimensional
multichip module United State Patents, US 5373189,
December 1994.

[5] Miura et al. A 195Gb/s 1.2W 3D-Stacked Inductive
Inter-Chip Wireless Superconnect with Transmit Power
Control Scheme. In IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, pages 264–265, Feb
2005.

[6] Shashidhar Mysore, Banit Agrawal, Navin Srivastava,
Sheng-Chih Lin, Kaustav Banerjee, and Tim Sherwood.
Introspective 3D chips. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural
support for programming languages and operating
systems, pages 264–273, New York, NY, USA, 2006.
ACM Press.

[7] RTI. The Economic Impacts of Inadequate
Infrastructure for Software Testing. Technical Report
NIST Planning Report 02-3, National Institute of
Standards and Technology, May 2002.

2

The structure and generation of Non-graded Finite
Difference Octree Grids

Vikram Aggarwal
University of California

Santa Barbara
CA, USA, 93117

vik@cs.ucsb.edu

John R. Gilbert
University of California

Santa Barbara
CA, USA, 93117

gilbert@cs.ucsb.edu

Frederick Gibou
University of California

Santa Barbara
CA, USA, 93117

fgibou@cs.ucsb.edu

ABSTRACT
Fluid flow problems are often solved computationally, and
solve a major application for supercomputers and large com-
puting clusters. The computation kernel in these problems
is a linear system solve Ax = b. In the recent work by [2],
adaptive grids are used to solve fluid flow problem, to a high
degree of accuracy. While Finite Difference adaptive grids
make it easier to discretize the domain, and form much sim-
pler discretization schemes than Finite Element methods,
the linear system is harder to solve. In the work by [2],
for example, the matrices are unsymmetric. We aim to find
out more about the structure of these matrices, specifically
for 3D geometries in various cases. Towards this, we have
written general purpose codes to generate such geometries,
and tools to help visualize them either as static images, or
video. Once we generate the Finite Element Grids, we can
evaluate the matrix properties. While the matrix is unsym-
metric, we note that it has a lot of structure, and examine
possible features that can be exploited in a linear solver for
such systems.

1. MOTIVATION
Computers are increasingly used to solve various impor-

tant engineering problems, pertaining to fluid flow, materi-
als research, among many others. In most such engineering
problems, the computational kernel involves solving a linear
system of the form Ax = b, where A is a square matrix. This
linear system solve completely dominates the time required
to compute the final solution. This computational cost ne-
cessitates both increased research and increased funding into
faster computers, and also algorithms to speed up the linear
system solve. Our work focusses on algorithmic advances,
to speed up the cost of the linear solve.

A common method to solve the linear system solve in-
volves preconditioning, where the original matrix A is mul-
tiplied by a matrix M−1, called the preconditioner. While
there is a large body of literature on preconditioning tech-
niques, making a good preconditioner often relies on a com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies bear
this notice and the full citation on the first page. To republish, to post on
servers or to redistribute to lists, requires no specific permission and no fee.
Graduate Student Research Conference 2007, Santa Barbara, USA
Copyright 200X UCSB X-XXXXX-XX-X/XX/XX ...$2.56.

bination of Linear Algebra theory and knowledge of the un-
derlying physical process. For this purpose, we are interested
in the structure of the matrix A, and in gaining insight into
the physical process that generates it.

We are interested in solving large fluid flow problems,
over 3D domains. The equations governing fluid flow are
the Navier Stokes equations, with a Poisson equation being
solved at every iteration. In the work by [1], the Level Set
Method [3] and adaptive grids are used to solve this system
to first order accuracy. In this case, the matrix is symmetric,
and the authors use the Conjugate Gradient method to solve
the linear system. The recent work by [2] discretizes the
Navier Stokes equation on completely adaptive grids, and
obtains second order accuracy. In the newer work, however,
the higher order accuracy makes the matrix non-symmetric
and thus Conjugate Gradients cannot be used. This second
order technique is the main focus of this paper. The ma-
trices of interest are generated using the technique in [2],
for 3D domains. The matrix sizes can get quite large, as
increasing the size allows researchers to model either larger
volumes, or refine the existing volume to much finer detail.

2. GENERATOR
In our work, we investigate the structure of these matri-

ces. First, we describe our matrix generator, called Geom-
Oct, which is a robust, flexible tool to generate such grids.
GeomOct generates general Octree geometries, over an ar-
bitrary 3D domain. The tool is written with a view towards
correctness, speed, and flexibility. Further, it can either be
used as a library, or as a stand-alone program, making it
attractive to researchers burdened with generating Octree
geometries. Information can be stored at either the cell cen-
ters, or the cell nodes, to allow for simulation of a wide
variety of physical processes. Once the octree grid is gen-
erated, helper methods are provided to iterate over all the
octree nodes in depth first order, or all the corners.

For most common uses, a single program is provided,
where the user has to specify the function which returns
a signed distance function for the interface. This program
is easy to use and extend, all a casual user needs to specify
is a signed distance function.

2.1 Working
In 3D, the volume is automatically discretized using Oc-

trees. The grid generator requires a signed distance function
φ, where φ(x) is the distance from the fluid interface. φ(x)
is negative when x is inside the fluid, and positive outside,
and zero on the interface itself. GeomOct refines the vol-

3

ume around the interface to the maximum possible depth
allowed by the user. While this formulation is motivated
by the Level Set Method approach, it is not limited to the
Level Set Method. Complex geometries, for example a hull
of ship, could be modelled similarly by considering the hull-
water interface, where the value of φ(x) is negative for all
the points inside the hull. In either case, the refinement is
carried out to surround the interface with fine cells. Else-
where in the domain, there is no refinement. This ensures
that all the computational effort is spent in the region of
interest. We do not impose a graded grid, where the volume
of neighboring cells differs only by a constant factor. No
such artificial constraints are imposed.

Once the volume is discretized, the user can choose to run
iterators over all the octree nodes, or all the corners in a
straightforward manner. One such iterator assigns pressure
and density values to all the cell corners. Another computes
the matrix from a Finite Difference formulation. A third
could print out the dependencies between the corners, for a
Multigrid-like method. The sequence of iterators depends
on the user’s choice, and many iterators could be run on the
same mesh, once it is constructed.

Since the octree is just a simple data object, there is also
the possibility of keeping many octrees in memory. This
could be to model different parts of the same computation,
or to compare two octrees simultaneously. The amount of
octrees, or the amount of refinement is limited only by the
memory on the machine. We have successfully generated
grids of up to 65 million unknowns with the current code.
Figure 1 shows the corners of a spherical geometry. The
grid has been cut away to reveal the spherical shell to the
right. One can immediately notice that the density of points
is the greatest near the spherical shell, and sparse when
we move away from the shell. The shell is the region of
interest in most computations, and this method devotes the
maximum computational elements (and resources) to the
region of interest.

Our tools have been designed to be of use in both ma-
trix analysis, and in visualization. As a result, we generate
matrices that can be imported into common matrix analysis
tools like Matlab, or Octave. We also generate grids which
can be imported into freely available visualization software,
to allow researchers to generate beautiful images and movies.
The tool, and all supporting code is available through our
website1 under the GNU General Public License (GPL).

3. ANALYSIS
Once the octree grids are generated, we proceed to show

the structure of matrices that arise from Finite Difference
approximations on these simple geometries. We examine
these matrices to isolate the reasons for the non-symmetric
values. We show how to approximate these matrices by sym-
metric matrices, and also how these matrices can be approx-
imated by symmetric, positive definite matrices. We justify
our choice of approximations by appealing to the underlying
physical process. In many cases, the symmetric approxima-
tions model the eigenvalues of the original matrix closely.
While this does not immediately lead to robust linear solvers
for this system, it does suggest possible avenues for inves-
tigation. In order to solve large 3D grids, we believe it is
crucial to get an understanding of these properties.

1http://gauss.cs.ucsb.edu/

Figure 1: A cut-away of a spherical grid. Note
the sparseness of points far away from the spheri-
cal shell.

4. CONCLUSION
We demonstrate a 3D grid generator for fully adaptive

meshes, which is capable of being run through a library call,
or as a stand-alone program. We hope the flexibility of our
tool will motivate researchers to download it and generate
3D geometries. We hope that this tool also encourages more
research into the matrices of 3D Octree geometries.

We analyze the matrix structure of such 3D geometries,
and list some key properties of such grids, especially for the
second order accurate method of [2]. In particular, we show
that while the grids are unsymmetric, they have a significant
symmetric component, and that symmetric approximations
to these grids can be quite close. Our goal is to solve large
3D geometries, and we believe this work is promising step
in that direction, and the insight gained shall be invaluable
to researchers evaluating such geometries in the future.

5. REFERENCES
[1] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water

and smoke with an octree data structure. SIGGRAPH,
pages 457–462, 2004.

[2] C. Min and F. Gibou. A second order accurate
projection method for the incompressible navier-stokes
equations on non-graded adaptive grids. Journal of
Computational Physics, 219(2):912–929, 2006.

[3] J. A. Sethian. Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational
Geometry. Mathematics. Cambridge University Press,
1999.

4

Environmental Tomography

Stacy Patterson† Bassam Bamieh‡ Amr El Abbadi†

†Department of Computer Science ‡Department of Mechanical Engineering
University of California, Santa Barbara University of California, Santa Barbara

{sep, amr}@cs.ucsb.edu bamieh@engineering.ucsb.edu

1. INTRODUCTION
Mobile phones are ubiquitous computing devices. If these

devices are coupled with sensors, they can provide a power-
ful computing platform for large-scale sensing applications.
Phones can be equipped with sensors that measure the quan-
tity of harmful pollutants such as sulfur dioxide or contam-
inants such as radiation, and the sensor readings acquired
from these devices can be used to detect and monitor the
levels of these harmful substances in populated areas. Since
modern mobile phones are GPS-enabled, it is possible to
record not only the concentration of the sensed phenomenon,
but also the exact location of the sensor reading. This loca-
tion information opens the door for the creation of detailed
spatial models of the physical data distribution.

However, the mobile computing platform also presents
several challenges. Mobile devices have limited power and
storage capacities, and users may only be willing to con-
tribute a small fraction of these resources to a sensing appli-
cation. Users move in independent, unpredictable patterns,
and a sensing application cannot expect that a device take
sensor readings in predefined locations, nor can it expect
that sensor readings can be taken at every point in a region.
Finally, by reporting location information along with sensor
readings, users are forced to reveal their locations. Users
may not be willing to participate in a program that requires
them to divulge this private location information.

We propose Environmental Tomography, an approach for
environmental sensing and spatial data modeling using mo-
bile devices that overcomes these challenges. Tomography
has long been used in medical imaging techniques such as
Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI) [1]. For example, in a CT scan, two dimensional
X-rays are taken in multiple directions, and these two di-
mensional projections are combined to reconstruct a three-
dimensional image. Similarly, in Environmental Tomogra-
phy, one dimensional projections, sums of sensor readings,
are collected along fixed query paths across the region, and
the projections are used to reconstruct an estimate of the
underlying data distribution.

Environmental Tomography provides a number of ben-
efits. The data collection approach is designed to over-
come the challenges of mobile networks. No requirements
are placed on the individual dynamics of any mobile device,
and the resource requirements at each device are low. Since
sensor readings are aggregated, there is no need to report
the location of any device. Therefore, the privacy of user
locations is preserved. The technique is also robust to query
failure and partial information. Accurate estimates can be

!"#$%&&'()

*+%(,%"

-.,%/.0

!
"
#"
$%
&
''
(
)
#*
&
+

,-(./

-.,%/.0

0(1-'#

Figure 1: System Architecture

generated from a limited number of projections and can be
further refined as additional results are reported.

2. ENVIRONMENTAL TOMOGRAPHY
A high level view of the proposed system architecture is

shown in Fig. 1. The system consists of a collection of mo-
bile phones that are equipped with sensors and also with
Bluetooth or 802.11 radios for communication with other
nearby devices. Phone users may move about in arbitrary
patterns, and devices may join (power on) and leave (power
off) the system at any time. While individual user mo-
bility patterns are not necessarily predictable, we expect
that there is some predictability to the network as a whole.
Specifically, during certain times of the day, namely rush
hour, it is reasonable to expect that there is a high density
of users, and therefore of mobile phones, along roads and
walkways. We assume that along these paths, the mobile
devices form a connected network.

The system also has several fixed gateways that are de-
ployed throughout the sensing region. The gateways are ca-
pable of local wireless communication, and they have reliable
connections to the processing center. The processing center
is responsible for issuing queries for data collection and per-
forming tomographic reconstruction on the query results to
generate an estimate of the entire physical distribution.

Data Collection
The data collection process is illustrated by the arrows in
Fig. 1. The processing center creates the query message
which contains the specification of the query path. The path
is defined by start and end coordinates and the distance be-
tween sensor readings. For simplicity we assume the query
paths are straight line segments, though it is possible to
specify more complex path types. This specification com-
pletely determines the set of coordinates, or sampling points,
at which readings should be taken. The query also contains
a sum field that is updated as the readings are collected.

The processing center sends the query message to the gate-
way that is closest to the start coordinates, where it is in-

5

troduced into the mobile network. To route queries, our
approach relies upon two established routing protocols for
mobile ad-hoc networks: a greedy cartesian routing protocol
such as Greedy Perimeter Stateless Routing (GPSR) [2] and
Trajectory Based Forwarding (TBF) [3]. In GPSR, the mes-
sage is routed from source to destination in a greedy manner
where each device forwards the message to the neighboring
device that is closest to the destination. In TBF, the goal is
to ensure that the message follows a specified trajectory. In
this case, each device forwards the message to the neighbor
that lies on or near that trajectory.

Each query is routed from the gateway to the start co-
ordinates using greedy routing. Once the query reaches its
start coordinates, TBF is used to forward the query message
along the specified trajectory, the query path. Whenever a
device with the message moves on (or near) a sampling point
as defined in the query, the device takes a sensor reading and
adds it to the sum field in the query. The updated query is
then forwarded to the next hop along the query path. When
the query reaches the end coordinates, it is routed back to
the nearest gateway using greedy routing, The gateway then
sends the message back to the processing center.

When the processing center receives the query results, it
performs tomographic reconstruction to generate the esti-
mate of the distribution from the aggregate measurements.
We explain this process below.

Tomographic Reconstruction
We represent the results of the sum queries by the vector
m where each component mi corresponds to the result of
the i’th query path. Let f be a two-dimensional data dis-
tribution; f(xi

j , y
i
j) is the measurement at the j’th sampling

point on the i’th query path. We define an operator A that
generates the vector m from an underlying distribution f by
computing the sums of measurements along M query paths

A(f) :=

264
P

j f(x1
j)

...P
j f(xM

j)

375 .
The goal of tomographic reconstruction is to find the dis-
tribution that satisfies the equation A(f) = m, which is a
linear system of equations in the unknown f . Unlike in medi-
cal imaging where one is able to take projections along many
paths in every direction, in Environmental Tomography, the
choice of paths along which aggregates can be taken is re-
stricted by the layout of the roads. This limitation makes
the reconstruction problem more difficult as the system is
underdetermined. There are, in fact, infinitely many solu-
tions that satisfy A(f) = m. In this case, one must specify

criteria that define an optimal solution f̂ from among this
set of feasible solutions. A common approach is to define the
optimal solution as the solution where the L2 norm, ||f ||2, is
minimized. However, in the case of a physical phenomenon
such as pollution, the solution with the minimum L2 norm
is not the solution that most accurately reflects the physical
data distribution. Therefore, we augment the optimization
criteria to include physically meaningful constraints, specif-
ically constraints relating to the properties of diffusion.

Any diffusive process, such as diffusion of a gaseous sub-
stance, satisfies the diffusion equation

∂

∂t
f(t, x, y) =

„
∂2

∂x2
+

∂2

∂y2

«
f(t, x, y) =: 4f.

(a) Original Distribution

(b) Estimate

Figure 2: Tomographic Reconstruction using 19
query paths along streets of Midtown Manhattan

If we also assume that the distribution f is quasi-static, then
the time variation term ∂f/∂t is small, implying that 4f
should be small. Incorporating the assumptions about diffu-
sion into our optimization, we use a minimization criterion
that is a weighted combination of ||f ||2 and || 4 f ||2. Ex-
perimentally, this criterion yields estimate distributions that
closely resemble the actual distributions.

The tomographic reconstruction problem can then be for-
mulated as the following optimization problem: minimize
< f,Qf >, where Q :=

`
I + α42

´
, subject to the constraint

A(f) = m. It can be shown that the optimal solution is

f̂ = Q−1A∗(AQ−1A∗)−1m.

An example of an estimate generated using Environmental
Tomography is shown in Fig. 2. We use a synthetic data dis-
tribution of two Gaussian curves, representing two sources
of contaminant with different magnitudes. We use Midtown
Manhattan as the underlying road map. The estimate is
generated from only 19 query paths along city streets and
avenues with 533 sampling points in total. The reconstruc-
tion produces two curves similar to the original distribution
and also gives a good approximation of the location of the
peaks, indicating the sources of the contamination.

3. DISCUSSION
We have shown the feasibility of a ubiquitous sensing ap-

plication that preserves the privacy of user location infor-
mation. Our solution is also robust to the dynamics and
geographical limitations of mobile networks. We plan to ex-
pand this work to refine the reconstruction process and to
address issues such as optimal query path selection, the role
of mobile network density, and the effects of noisy sensor
readings and GPS inaccuracies.

4. REFERENCES
[1] A. C. Kak and M. Slaney. Principles of Computerized

Tomographic Imaging. SIAM, 2001.

[2] B. Karp and H. T. Kung. GPSR: Greedy perimeter
stateless routing for wireless networks. In MobiCom
’00, pages 243–254, 2000.

[3] B. Nath and D. Niculescu. Trajectory based forwarding
and its applications. In MobiCom ’03, pages 260–272,
2003.

6

Automated Size Analysis for Object-Oriented Systems

Fang Yu
Computer Science Department

University of California
Santa Barbara, CA 93106, USA

yuf@cs.ucsb.edu

ABSTRACT
This work investigates automated veri�cation of size prop-
erties of collection types in the design languages for object-
oriented systems. The goal is to automatically verify in-
variants about the sizes of the collections of a class with
respect to the pre and post-conditions of the methods of
that class. The presented approach is based on a size ab-
straction that abstracts away the contents of the collections
while preserving the constraints on their sizes. A case study
was conducted on the OCL speci�cation of the Java Card
API. The presented veri�cation approach discovered speci�-
cation errors in 26 out of the 150 methods in the 31 classes.

1. INTRODUCTION
Ensuring the correctness of object-oriented designs is a

crucial problem due to ubiquity of object-oriented program-
ming. Most common way of searching for errors in software
systems is testing, which cannot guarantee absence of bugs,
i.e., testing is not sound. Model checking, on the other hand,
is a sound technique that can be used to prove system cor-
rectness, but su�ers from the state explosion problem [1].
State explosion problem is particularly troublesome for col-
lection types, where the contents of each item in a collection
contributes to the size of the state space. We propose size
abstraction and analysis in order to achieve scalable veri�-
cation in the presence of collection types. Size abstraction
abstracts away the contents of collections to prevent state
explosion, and still enables sound size analysis by providing
an over-approximation of the behaviors of the system.
Automated size analysis is motivated by the observation

that collection sizes carry su�cient information to prove an
interesting class of properties. Although we compromise
precision by ignoring contents of a collection, we achieve
scalable veri�cation, and successfully leverage model check-
ing techniques to verify real-world applications. We believe
that speci�cation and analysis of size properties is impor-
tant and promising for several reasons. First, size properties
are commonly used in object oriented models and they do
not require an extra speci�cation e�ort for software devel-
opers who use object oriented modeling languages. Second,
violation of size properties is the cause of many types of
security vulnerabilities such as bu�er over�ows. Last, e�ec-
tive automated veri�cation of size properties can be achieved
by using abstractions that focus on size properties, and by
using domain speci�c and e�cient automated veri�cation
techniques that target veri�cation of systems characterized
by arithmetic constraints.

Verified

Falsified

Unknown

Action Language

Verifier
Size AbstractionOCL Parser

Specification
OCL

Figure 1: The OCL Size Analysis Framework

2. SIZE ANALYSIS FOR OCL
We present tools and techniques for size analysis of Ob-

ject Constraint Language (OCL) speci�cations. OCL [5] is a
speci�cation language for describing constraints on object-
oriented models. OCL is primarily used for specifying class
invariants on �elds and associations, and pre and post con-
ditions of class methods. One of the most basic tools in ob-
ject oriented modeling is the speci�cation of cardinalities of
associations. These speci�cations correspond to arithmetic
constraints on the number of objects that are associated
with another object. We refer to these invariants as size
properties, since they constrain the sizes of the associations.
Our framework is depicted in Figure 1. We parse the OCL

speci�cation and automatically translate the pre and post
condition of each method into its corresponding Action Lan-
guage module. After this translation we use an in�nite state
model checker, called Action Language Veri�er (ALV) [6],
for size analysis. ALV is an in�nite state model checking tool
that can verify or falsify (by generating counter-examples)
using approximate �xpoint computations. The checking sta-
tus is unknown when the computation fails to converge.
The OCL type system consists of basic types (such as

booleans and integers), user-de�ned types (i.e., classes), and
collection types. A Collection is an essential data type in
object-oriented modeling, since an association between two
classes correspond to a relationship between one object and
a collection of other objects. OCL supports three types of
collections: Set, Bag and Sequence. We de�ne the size ab-
straction using an abstraction function that transforms OCL
expressions by mapping expressions on collection types to
expressions on integers.
Size abstraction abstracts the contents of the collections,

but preserves the constraints on their sizes. We have imple-
mented a tool which automates this abstraction by convert-
ing OCL expressions on collections to arithmetic expressions
on their sizes. Below, we demonstrate our size abstraction
using the update method of the PIN class in the Java Card
API 2.1.1 [4].

context OwnerPIN::update(newpin: Sequence(Integer),
offset:Integer,length: Integer, e:Integer)
pre: newpin->notEmpty()

and offset >= 0

7

and offset+length <= newpin->size()
and length >= 0

post:(
1: thrownException=thrownException@pre
2: and self.pin->subSequence(0,length)

=newpin->subSequence(offset, offset+length)
)or(

3: thrownException=thrownException@pre->including(e)
4: and length > self.maxPINSize

)or(
5: thrownException=thrownException@pre->including(e)
6: and systemInstance->notEmpty()

)

The corresponding automatically generated Action Lan-
guage speci�cation is as follows:
module updateMod()
pre: newpin > 0 and offset >= 0

and length + offset <= newpin
and length >= 0 and

post:(
1: (thrownExceptions' = thrownExceptions
2: and tmp8 =tmp9

and (tmp8 = length - 0 + 1 and pin' >= length
or tmp8 = pin' and pin' < length)

and (tmp9 = length + offset - offset + 1
and newpin' >= length + offset

or tmp9 = newpin'
and newpin'< length + offset)

) or (
3: thrownExceptions' = tmp10

and tmp10 = thrownExceptions + 1
4: and length > maxPINSize'

) or (
5: thrownExceptions' = tmp11

and tmp11 = thrownExceptions + 1
6: and systemInstance' > 0)); endmodule

In the example above we labeled the Action Language and
OCL speci�cations to indicate the parts that correspond to
each other. The formal semantics of size abstraction can
be found in [7]. The abstract OCL speci�cation conserv-
atively approximates the behavior of the concrete speci�-
cation which means that if the abstract system satis�es a
size property it is guaranteed that the concrete system also
satis�es the property.

3. A CASE STUDY
We conducted a case study on the Java Card API, which

is the �rst open application programming interface for smart
cards. Since smart cards are designed to be the next gen-
eration IDs, correctness of the Java Card API speci�cation
is extremely important. The OCL speci�cation of the Java
Card API [4] contains of 31 classes with 150 methods. Using
ALV we were able to verify or falsify (by generating counter-
examples) all the classes in the Java Card API speci�cation.
For the falsi�ed classes, we identi�ed the errors in the cor-
responding method speci�cations by tracing the counter ex-
amples generated by ALV.
The veri�cation results of invariant consistency checking

are shown in Table 1. ALV veri�ed 26 out of the 31 classes
and falsi�ed the other 5 classes. Each class speci�cation
is checked within 10 seconds and 20MB. For these falsi�ed
classes, one can �nd a counter example violating the class
invariant even if engineers implement the class methods ac-
cordingly.
Size abstraction reduces the state space of the system and,

hence, the cost of automated veri�cation, and focusing on

Class M R tran+ver Mem
AID 7 F 0.06s+0.03s 2273k

Y 0.06s+0.06s 2322k
APDU 14 V 0.38s+0.12s 18248k
Applet 7 V 0.06s+0.01s 1532k
CardException 4 V 0s+0s 406k
CardRuntimeException 4 V 0s+0s 323k
Cipher 6 V 0.02 s+2.05s 2998k
CryptoException 2 V 0s+0s 135k
DESKey 2 V 0.01s+0.01s 422k
Dispatcher 5 V 0.01s+0.01s 635k
DSAKey 6 V 0.06s+6.2s 7840k
DSAPrivateKey 8 V 0.11s+2.61s 4170k
DSAPublicKey 8 V 0.11s+2.62s 4170k
CardRemoteObject 2 V 0s+0s 135k
JCSystem 11 F 1.08s+0.15s 18571k

Y 1.09s+0.19s 18571k
KeyBuilder 1 V 0.01s+0s 135k
KeyEncryption 2 F 0.01s+0s 118k

Y 0s+0s 131k
KeyPair 5 V 0s+0s 1044k
MessageDigest 3 V 0.01s+0s 397k
OwnerPIN 9 F 0.08s+0.52s 7725k

Y 0.1s+0.4s 5091k
PIN 4 F 0.03s+0.33s 5693k

Y 0.03s+0.23s 3670k
PINException 2 V 0.01s+0s 135k
RandomData 3 V 0s+0s 401k
RMIService 2 V 0s+0s 414k
RandomData 3 V 0s+0s 401k
RSAPrivateCrtKey 10 V 0.2s+7.31s 6087k
RSAPrivateKey 4 V 0.03s+0.05s 1008k
RSAPublicKey 4 V 0.03s+0.05s 1008k
SecurityService 3 V 0.01s+0s 520k
Service 3 V 0.01s+0s 270k
TransactionException 3 V 0s+0s 135k
UserException 3 V 0s+0s 270k

Table 1: Veri�cation of the Java Card API OCL
speci�cation. M: No. of methods, R: Result
(F:Falsify/V:Verify), tran: Translation time, ver:
Veri�cation Time. Y: Found a counter example.

size properties enables us to use e�cient, domain speci�c
model checking techniques for automated veri�cation.

4. CONCLUSION AND FUTURE WORK
We discussed automated size abstraction and analysis for

object-oriented systems. The experiments indicate our ab-
straction is precise enough to verify/falsify target systems,
while coarse enough to perform complex model checking
tasks e�ciently. A possible extension to this work would
be applying size abstraction to other design languages, such
as Java Modeling Language [3] and Alloy [2], as well as con-
ducting other case studies.

5. REFERENCES[1] E. Clarke, O. Grumberg, and D. Peled, Model Checking,
MIT Press, Jan. 2000.

[2] Daniel Jackson. �Alloy: A Lightweight Object Modelling
Notation.� ACM Transactions on Software Engineering
and Methodology, vol. 11, no. 2, pp. 256-290, 2002.

[3] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML:
A Notation for Detailed Design. In Haim Kilov, Bernhard
Rumpe, and Ian Simmonds (editors), Behavioral
Speci�cations of Businesses and Systems, chapter 12, pp.
175-188. Copyright Kluwer, 1999.

[4] Daniel Larsson and Wojciech Mostowski. �Specifying Java
Card API in OCL.� OCL 2.0 Workshop at UML 2003, San
Francisco, Electronic Notes in Theoretical Computer
Science, vol. 102 pp. 3-19, 2004,

[5] Jos Warmer and Anneke Kleppe. �The Object Constraint
Language: Precise Modeling with UML.� Addison-Wesley,
1998.

[6] Tuba Yavuz-Kahveci, Constantinos Bartzis, and Tev�k
Bultan. �Action Language Veri�er, Extended.� In Proc.
CAV '05, LNCS 3576, pp. 413-427, 2005.

[7] Fang Yu, Tev�k Bultan, Erik Peterson, �Automated Size
Analysis for OCL.� In Proc. ACM SIGSOFT ESEC/FSE
'07, pp. 331-340, 2007.

8

An Analysis of Shadows in Camera-Light Pairs and Its
Application to Multiflash Depth Edge Detection

Daniel A. Vaquero, Matthew Turk
Four Eyes Lab

Department of Computer Science
University of California, Santa Barbara

{daniel,mturk}@cs.ucsb.edu

1. INTRODUCTION
The analysis and interpretation of shadows is an important
and challenging problem in computer vision. They often ap-
pear in real-world scenes, leading to failures in vision tasks
such as segmentation, tracking, and recognition. On the
other hand, shadows carry valuable 3D information about
surfaces in the scene and can be used as a positive source
of information for many applications, such as estimation of
heights of buildings from aerial images [2], interactive ap-
plications [4] and non-photorealistic rendering [1]. Recently,
a multiflash imaging method that exploits shadows created
with lights close to the camera [3] was proposed. This tech-
nique combines shadow information from a collection of im-
ages taken using flashes at different positions in order to
detect depth edges (discontinuities in the depth map of a
scene as computed from the camera’s point of view), which
provide useful geometric information about the 3D shape of
the objects.

In this work, we derive a characterization of which depth
edge orientations, as projected onto the camera’s image plane,
can potentially be associated with cast shadows in a given
camera-light pair. The usefulness of our theoretical analysis
is then demonstrated on the problem of depth edge detec-
tion with multiflash imaging. We show that at least three
flashes are required in order to extract all depth discontinu-
ities from a general scene. In addition, the theory enables us
to characterize the missed depth edges in a two-flash setup.
Optimal light placement positions are presented and fail-
ure cases inherent to the detection algorithm are discussed.
Experiments with two-flash setups and a four-flash setup il-
lustrate the theoretical results. In this extended abstract,
we outline the basic ideas and concepts involved. A more
comprehensive and rigorous study is described in a submit-
ted conference paper [5].

2. THE SHADOW SPACE OF A CAMERA-
LIGHT PAIR

One question that arises when building a camera-light setup
is: for which depth edge orientations and locations in the
image will the light source cast a thin sliver of shadow along
the edge? In order to answer this question, we start by
defining, for a given point in the image, a space of edge-
shadows. This is done by considering an horizontal edge
passing through that point and having a shadow cast above
it, and then rotating it by all angles from 0 to 2π radi-
ans. An edge-shadow e(θ) is the horizontal edge rotated
by θ radians counterclockwise (with the shadow rotated to-

gether). Such space represents all possible edge orientations
that might pass through a specific pixel in the image. Each
orientation appears twice in the space, associated to angles
α and α + π, for 0 ≤ α < π. The shadow is cast along one
of the edge’s sides for the first case and along the opposite
side for the second case.

Another key component in our study is the epipolar ge-
ometry of camera-light pairs. The basic idea is to analyze
how the light rays that emanate from the light source in the
3D world project onto the camera’s image plane, assuming
a pinhole camera model and a small baseline (i.e., close to
the camera) point light source. The projection of the light
source onto the camera’s image plane is called the light
epipole. Similarly, the projections of the light rays leaving
the light source are called light epipolar rays. We can
classify the geometry of the light epipolar rays into three
different cases according to the relative position of the light
source: for a light placed in the plane parallel to the image
plane that contains the camera’s center of projection, the
light epipole is at infinity and the light epipolar rays are
parallel; for a light in front of the camera, the light epipo-
lar rays are radial divergent, starting from the light epipole;
and for a light behind the camera, the light epipolar rays
are radial convergent, pointing toward the light epipole.

In order to avoid issues that can be analyzed separately, we
work under the assumptions that the light source is a point
light source, the light distribution over the scene is uniform,
the objects being imaged have no specular reflections ([3] in-
cludes a solution to deal with this) and the camera-light dis-
tance is large enough to produce detectable shadows in the
image, but also small enough to prevent detached shadows
(a multibaseline setup is suggested in [3] to address baseline
issues). We then define a space S = (i, j, θ), where (i, j)
are coordinates of points in the image plane, and θ ∈ [0, 2π)
indexes the edge-shadow e(θ) in the space of edge-shadows.
The space of possible shadows for a camera-light pair is
a subset of S, constructed by taking, for each point (i, j) in
the image plane, the light epipolar ray that passes through
(i, j). Such ray defines a π-length open interval of edge-
shadows that might be generated at that point, built from
the simple observation that the ray’s origin and the shadow
are at opposite sides of the edge. Thus, by computing such
interval for every (i, j) in the image plane, we obtain the
subset of S that characterizes the edge locations and orien-
tations that will have a shadow cast along it if a picture is
taken using the camera-light pair considered.

9

3. MULTIFLASH DEPTH EDGE DETECTION
ANALYSIS

The multiflash technique [3] is based on the principle that
when an image is taken from a scene illuminated by a light
source close to the camera, thin slivers of shadow are cast
along depth edges. The shadow position depends on the
relative camera-flash position: for example, when the flash
is placed to the right hand side of the camera, shadows are
cast along the left hand side of the objects. To obtain the
depth edges, ratio images that accentuate the shadow re-
gions are computed by dividing each captured image by an
approximation of a shadow-free image, computed by taking
the maximum of all captured images. The light epipolar
rays are then traversed starting from the light epipole. Pix-
els are marked as depth edge pixels when a sharp negative
transition in intensity is found in the intensity profile along
the epipolar ray in a ratio image [3]. The following questions
arise: how many flashes should we use, and how should we
place them such that no depth edges are missed by the de-
tection algorithm? For example, in a two-flash setup with
lights in the camera plane and placed to the left and to the
right of the camera, horizontal depth edges are missed. It
is also known that each depth edge must be shadowed in at
least one image and not be shadowed in at least one other
image.

Building on the concept of space of possible shadows for
a camera-light pair, we show that in a two-flash setup there
will always be depth edges missed by the algorithm, even if
the lights are placed outside of the camera plane. Moreover,
it is optimal to place the lights in a way such that the light
epipolar rays arriving at each point (i, j) in the image plane
come from opposite directions. Such configurations are the
ones in which the two light sources are collinear with and
located on opposite sides of the camera’s center of projec-
tion. Depending on where the lights are placed, the pattern
of missed edges changes. For N ≥ 3 flashes, it is possible
to detect all depth edges by placing the flashes in the cam-
era plane in positions corresponding to the N vertices of a
regular N -gon, except for scenes in which there are regions
where all flashes cast a shadow. This can happen in some
special cases when two edges intersect. More flashes would
be necessary in order to illuminate the shadowed area, or
the N flashes could be rotated in such a way that one of
them illuminates the problematic area – however, the prob-
lem could appear in other areas after doing this. Further
research might investigate a way of iteratively analyzing the
scene in order to overcome this issue.

4. EXPERIMENTS
We performed some experiments with the objective of illus-
trating the theory. Four configurations were built: a two-
flash setup with flashes to the left and right of the camera, a
two-flash setup with flashes above and below the camera, a
two-flash setup with flashes in front and behind the camera,
aligned with the optical axis, and a four-flash setup combin-
ing the first two setups. In the third case, as the lights are
placed within the optical axis, the camera “sees” the light
in front, and the light behind the camera gets physically
blocked by the camera. In order to overcome these difficul-
ties, we devised a scheme using two plate beamsplitters [5],
also known as half-mirrors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: Depth edge detection. a) flash in front;
b) flash behind; c) depth edges for front-behind; d)
flash to the left; e) flash to the right; f) flash below;
g) flash above; h) depth edges for above-below; i)
depth edges for left-right; j) depth edges for four-
flash; k-l) failure cases.

The images in Figure 1 show the obtained results. The left-
right and above-below arrangements fail to detect horizontal
and vertical depth edges, respectively; radial edges are diffi-
cult for the front-behind setup. Two examples of the failure
case can be seen in Figures 1(k-l): the circled regions contain
areas that are in shadow in all images.

5. REFERENCES
[1] D. Akers, F. Losasso, J. Klingner, M. Agrawala, J. Rick,

and P. Hanrahan. Conveying shape and features with
image-based relighting. In IEEE Visualization, 2003.

[2] R. Irvin and D. McKeown. Methods for exploiting the
relationship between buildings and their shadows in
aerial imagery. IEEE Systems, Man, and Cybernetics,
19(6):1564–1575, 1989.

[3] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. A
non-photorealistic camera: depth edge detection and
stylized rendering using multi-flash imaging.
SIGGRAPH 2004 / ACM Transactions on Graphics,
2004.

[4] J. Segen and S. Kumar. Shadow gestures: 3D hand
pose estimation using a single camera. In Conference
on Computer Vision and Pattern Recognition
(CVPR’99), pages 479–485, Fort Collins, USA, 1999.

[5] D. A. Vaquero, R. Feris, M. Turk, and R. Raskar.
Submitted.

10

Invited Talk

Software at Google: Tolerance in the Face of Pretty Much
Everything

Russell Quong
Google, Inc.

1600 Amphitheatre Parkway
Mountain View, California - 94043, USA

Abstract

The challenges of writing software for a large internet service company, like Google, differ in many ways from
historic academic research. Classic hard problems such as super clever algorithms and fine-grained parallelization are
not issues. Instead, we have to cope with lack of reliability at every level, due to both our internal size and the size of
our user base. Internally, Murphy’s law holds. Externally, the data we process is a free for all. We addresses these points
at a high level, and gives some examples of recent work showing how we tolerate pretty much everything.

Bio

Russell W. Quong received the B.S. degree in electrical engineering from the California Institute of Technology,
Pasadena, CA, and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Palo Alto, CA. He
was an Assistant Professor in the School of Electrical Engineering at Purdue University, West Lafayette, IN until 1996.

Russell worked briefly at the startup that became VA Linux and then spent 5 years at Sun Microsystems doing system
architecture performance modeling. He also taught night classes at ITU for many years. He currently works for Google
as a software engineer.

11

Characterization of Error-Tolerant Applications while
Protecting Control Data

Susmit Biswas ?, Darshan D. Thaker †, Diana Franklin ‡,
John Oliver †, Derek Lockhart ‡, Tzvetan Metodi †, Frederic T. Chong?

?University of California, Santa Barbara
†University of California, Davis

‡California Polytechnic State University, San Luis Obispo
contact: susmit@uc.ucsb.edu

As the minimum feature size of process technologies continues to
decrease, microprocessor designers are faced with new reliability
challenges. Feature sizes of less than 0.25µm result in an increased
likelihood of noise-related faults that are the result of electrical dis-
turbances in the logic values held in circuits and on wires [3] . Nat-
ural radiation such as neutrons produced by cosmic rays and alpha
particles generate electron-hole pairs as they pass through a semi-
conductor device. This may lead to transient faults that cause single
bit upsets, which in turn may introduce a logical fault in the circuit.
A considerable amount of recent research has focused on under-
standing how errors in low-level circuits manifest themselves in
the architecture. Much of the error-tolerance has focused on pre-
venting any errors from affecting the running program. One can
run two copies of the program, utilizing Simultaneous Redundant
Multithreading. Weaver et al [6] developed techniques to reduce
the probability or errors and reducing the impact of errors. Reis et
al [4] propose allowing the user to switch between levels of relia-
bility at the software level. That way, unimportant applications like
web-surfing will not pay the costs, whereas banking applications
would. We focus on allowing lower reliability within an applica-
tion, as opposed to across applications.
As embedded applications become increasingly demanding, a sys-
tems approach must be applied to provide the performance needed
within cost and power constraints. This paper focuses on design-
ing embedded systems that exploit application tolerance to reduced
accuracy. Such tolerance is already often used to accomodate vari-
ations in quality of service in communication and network perfor-
mance. We suggest that trends in technology and usage motivate
“pushing” this tolerance into the microarchitecture of embedded
processors. To do so, we must understand, at an application level,
how errors affect the running program.
To manage this interaction between the microarchitecture and ap-
plications, we leverage the following key observation: computa-
tions involving control are much more sensitive to inaccuracy than
others [5]. We propose using static analysis to identify instructions
leading to control decisions. Note that, although our focus is error-
tolerant applications, our solutions are not application-specific.
We focus on application classes that do not require full accuracy
to get their intended results. This can occur in several ways. First,
applications that interact with human senses are very tolerant to
slight inaccuracies. For example, phone lines do not carry sound
perfectly, yet are sufficient for human perception. Second, there
are numerical and search algorithms that expect to iterate until an
adequate answer is attained.
In this study, we identify several applications that are tolerant of er-
rors to varying degrees. All applications are part of SPEC CPU2000

or MiBench . Perceptual applications are more tolerant than decision-
making applications. In order to evaluate each application, we de-
fine a fidelity measure for this application. This is typically some
sort of distance from the optimal solution. For some applications,
we have also defined a fidelity threshold, which is a subjective mea-
sure on how much inaccuracy a user would tolerate. We summarize
the applications we study and the fidelities we define for each one
in Table 1. All of these applications have in common the fact that
they can tolerate errors in just certain areas of the algorithms. It
is important in our work that we analyze where the algorithms are
tolerant to errors. We will then explore how to design the harware
to protect important data. Somewhat surprisingly, we find that we
can perform our protection at the assembly level with an automatic
compiler. The programmer identifies which functions can tolerate
some error to their data, and the compiler tags instructions that do
not affect the control operations. We found in a previous study[5, 1]
that protecting data used for control increases the fidelity of MPEG
dramatically. Our goal for perfoming data flow analysis is to iden-
tify arthimetic instructions that lead to a change in control flow.
The technique we employ is used in contemporary compilers to de-
termine reaching definitions [2], which enable optimizations such
as loop-invariant code motion and copy propagation. We start at the
last instruction of a basic block and move in the direction opposite
program flow, tagging arithmetic instructions that do not influence
control flow. Our compiler does not perform inter-procedural anal-
ysis. We perform static analysis at the MIPS assembly level and
run the tagged executables on Simplescalar for functional simula-
tion. For less error-tolerant applications, we introduced an absolute
number of errors into the running program. For more error-tolerant
applications, we introduced errors at a certain rate, expressed in er-
rors per second (on a 1GHz machine). All of our error rates were
much higher than current soft error rates in order to analyze how
tolerant these applications are. In Figure 1, we show that it takes
more than 100 errors per second before Susan shows any frame loss
due to the SNR being too low. In addition, although the unprotected
execution suffers no catastrophic errors, the fidelity is substantially
lower than with protection. For Susan, disabling protection leads
to very poor fidelity of output, however it does not crash the appli-
cation. We find that without protecting control data, there is little
to no error tolerance, even in applications that are designed for tol-
erating network errors. We also see that even with our static analy-
sis, some failures do occur because of we do not perform memory
disambiguation. So although we make great strides in protecting
control data, we do not protect everything.
We find that with static analysis, applications can be protected such
that their tolerance to errors is greatly improved. Moreover, the

12

Application Description Fidelity Measure
Susan edge detection Imagemagick comparison
MPEG video encoding % frames not dropped
MCF vehicle scheduler % extra time in schedule

Blowfish encryption % bytes correct from original
GSM speech encoding/decoding signal-to-noise difference
ART image recognition error in confidence of match

Table 1: Summary applications and their fidelity measures

 0

 10

 20

 30

 40

 50

 60

100920110015502300

P
S

N
R

 o
f P

ic
tu

re
s

w
ith

 E
rr

or

Avg. Errors Inserted

Static Analysis ON
Static Analysis OFF

Fidelity threshold

Figure 1: Susan Results

fraction of dynamic instructions related to control structures is of-
ten small when compared to overall execution. This indicates that
only moderate effort is necessary for an architecture to protect these
instructions through redundancy.

1. REFERENCES
[1] Darshan D. Thaker and Diana Franklin and John Oliver and

Susmit Biswas and Derek Lockhart and Tzvetan S. Metodi
and Frederic T. Chong. Characterization of Error-Tolerant
Applications When Protecting Control Data. In IISWC-2006,
October 2006.

[2] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[3] N.Cohen, T.S.Sriram, N.Leland, D.Moyer, S.Butler, and
R.Flatley. Soft error considerations for deep-submicron cmos
circuit applications. IEDM99, pages 315–319, December
1999.

[4] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.
August, and S. S. Mukherjee. Software-controlled fault
tolerance. ACM TACO, 2(4):366–396, Dec 2005.

[5] D. D. Thaker, D. Franklin, V. Akella, and F. T. Chong.
Reliability requirements of control, address, and data
operations in error-tolerant applications. WAR05.

[6] C. T. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt.
Reducing the soft-error rate of a high-performance
microprocessor. IEEE Micro, 24(6):30–37, Nov 2004.

13

Anomaly-based Detection of State Violations in Web
Applications

Marco Cova, Viktoria Felmetsger, Giovanni Vigna
Computer Security Group

{marco,rusvika,vigna}@cs.ucsb.edu

1. INTRODUCTION
In recent years, web applications have become tremendously

popular, and nowadays they are routinely used in security-critical
environments, such as medical, financial, and military systems.
As the use of web applications for critical services has increased,
the number and sophistication of attacks against these applica-
tions have grown as well.

In this work, we concentrate on workflow violation attacks, de-
tection and prevention of which is not fully addressed by existing
approaches. These attacks exploit logical errors in web applica-
tions in order to bypass the intended workflow of the application.
The intended workflow of a web application represents a model
of the expected user interactions with the application. Examples
of workflow violation attacks include authentication and autho-
rization bypass, parameter tampering, and code inclusion attacks.

Workflow attacks can be very difficult to detect “from the out-
side,” that is, using sensors that only analyze HTTP requests and
responses in isolation. As a result, we believe that a more ef-
fective approach to the detection of this type of attacks consists
of monitoring, at runtime, the state of the web application “from
the inside.” In this context, the state of a web application at a
certain point in the execution is the information that survives a
single client-server interaction: in other words, the information
associated with the user session.

We introduce a novel approach, called Swaddler, to the de-
tection of workflow attacks that analyzes the internal state of a
web application using anomaly detection techniques. We imple-
mented our approach as an Intrusion Detection System for PHP
applications.

2. APPROACH
In Swaddler, we associate each instruction of the application

with a model of the state in which that instruction is normally
executed. We instrument the PHP interpreter to extract state data
from an application. Swaddler operates in one of two modes:
training or detection. In training mode, the application is exe-
cuted and models of the normal application state are derived for
each basic block in the application. After these models are es-
tablished, the system switches to detection: the execution of the
application is monitored and any anomaly in the observed state is
reported as an attack.

Swaddler consists of two main components: the sensor and

the analyzer. The sensor is represented by the instrumentation
code, which collects the application’s state data (i.e., the values
of state variables) at the beginning of each basic block, and en-
capsulates them in an event that is sent to the analyzer. An event
generated by the sensor defines a mapping between the variable
names and their current values. For each basic block of the ap-
plication, the analyzer maintains a profile, i.e., a set of statistical
models used to characterize certain features of the state variables.
In training mode, profiles for application blocks are established
using the events generated by the sensor (see Figure 1), while in
detection and prevention modes these profiles are used to iden-
tify anomalous application states. When an anomalous state is
detected, the analyzer raises an alert message, and, optionally, it
can immediately stop the execution of the application.

3. IMPLEMENTATION
In the current prototype, the sensor is implemented as a mod-

ule of the open-source Zend Engine interpreter [3], which imple-
ments a virtual machine that is responsible for parsing programs
written in PHP and compiling them into an intermediate format,
which is then executed. In our implementation, whenever the
execution of a basic block of a PHP script is requested (e.g., in
response to a user’s request to a web application), the Zend En-
gine calls a handler function that passes information about state
variables to the analyzer.

Our implementation of the analyzer module is based on a mod-
ified version of the libAnomaly framework [2]. The anomaly
detection process uses a number of different models to identify
anomalous states for each basic block of a web application. The
task of a model is to assign a probability value to a feature of a
state variable or a set of state variables associated with the block
that is about to be executed. This value reflects the probability
of the occurrence of a given feature value with regards to an es-
tablished model of “normality.” The overall anomaly score of a
block is derived as the weighted sum of the probability values cal-
culated by the models associated with the variables in the block.
libAnomaly provides a number of built-in models that can

be combined to model different features of a variable or a set of
variables. In Swaddler, we used a number of existing models to
represent the normal values of single variables. These models
are used to characterize such features of a variable as its normal
length (Attribute Length model), the structure of its values (At-
tribute Character Distribution model), the set of all the possible

14

Figure 1: Swaddler in Training Phase.

Table 1: Detection effectiveness and performance overhead.
Application Training Set Clean Set False Attack Set Attacks Avg. Instrumentation Avg. Detection

Size Size Positives Size Detected Overhead Overhead
(# requests) (# requests) (# requests) (ms) (ms)

BloggIt 9779 1586 0 15 15 5 8
PunBB 10200 1360 5 1 1 23 115
Scarf 9615 1000 1 10 10 3 13

SimpleCms 9333 1969 0 10 10 1 5
WebCalendar 19800 3300 1 1 1 5 75

values (Token Finder model), etc. We also developed two addi-
tional models to capture relationships among multiple variables
associated with a block (a Variable Presence or Absence model
and a Likely Invariants model, based on the Daikon system [1]).

4. EVALUATION
We evaluated our system on five real-world, publicly available

PHP applications: a blog application, a discussion board, a con-
ference management system, an online calendar and a content
management system. These applications were chosen because
they are a representative sample of the different type of function-
ality and levels of complexity that can be found in commonly-
used PHP applications. Furthermore, each of the test applications
is vulnerable to at least one workflow attacks.

The evaluation consisted of a number of tests in a live setting
with each of the test applications. Attack-free data was generated
by running scripts controlling a browser component to simulate
user activity. In particular, we first identified the set of available
user profiles (e.g., administrator and guest user) and their corre-
sponding atomic operations (e.g., login and post a new message),
and then we combined these operations to model a typical user’s
behavior.

We used this technique to generate three datasets: the first
was used for training the libAnomaly models, the second for
choosing suitable thresholds, and the third one was the clean
dataset used to estimate the false positive rate of our system.

Since it was not sensible to collect real-world attack data by
making our testbed publicly accessible, attack data was generated
by manually performing attacks against each application, while
clean background traffic was directed to the application by us-
ing the user simulation scripts. We used the resulting datasets to

assess the detection capability of our system.
To evaluate the effectiveness of our approach we trained our

system on each of the test applications. Then, we recorded the
number of false positives generated when testing the application
with attack-free data and the number of attacks correctly detected
when testing the application with malicious traffic.

Table 1 shows the results of the tests assessing the detection
capabilities and the overhead of our tool.

In our experiments, Swaddler detected all the attacks that ex-
ploited known vulnerabilities, and was also able to detect a novel
file injection vulnerability that we identified in BloggIt. Swad-
dler raised only a few false positives, which were caused by the
execution of parts of the applications that were exercised by a
limited number of requests during the training phase.

Our system introduces overhead (1) to analyze and instrument
the compiled code of the requested application’s page (“instru-
mentation overhead”), and (2) to determine whether the current
state is anomalous (“detection overhead”), whenever a basic block
is entered during execution. Our results indicate that the total
overhead is acceptable for most applications.

5. REFERENCES
[1] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants. Science of
Computer Programming, 2007.

[2] The Computer Security Group at UCSB. libAnomaly
Project Homepage. http://www.cs.ucsb.edu/
∼seclab/projects/libanomaly.

[3] Zend. Zend Engine.
http://www.zend.com/products/zend engine.

15

On the Representation and Multiplication of Sparse
Matrices

Aydın Buluç
Combinatorial Scientific Computing Lab

Department of Computer Science
University of California, Santa Barbara

aydin@cs.ucsb.edu

John R. Gilbert
Combinatorial Scientific Computing Lab

Department of Computer Science
University of California, Santa Barbara

gilbert@cs.ucsb.edu

1. INTRODUCTION
Array-based graph algorithms have emerged as a means of
solving numerous challenges of developing parallel graph al-
gorithms. By exploiting the duality between matrices and
graphs, array-based algorithms aim to apply the existing
knowledge on parallel matrix algorithms to parallel graph
algorithms. One of the key primitives in array-based graph
algorithms is computing the product of two sparse matrices
(SpGEMM) over a semiring. Most interesting graphs, such
as the WWW graph, finite element meshes, planar graphs
and trees, are sparse. In this work, we consider a graph to
be sparse if nnz = O(n) where nnz is the number of edges
and n is the number of vertices. Using a dense matrix mul-
tiplication algorithm for SpGEMM is overkill since the cur-
rent fastest matrix multiplication algorithm has complexity
O(n2.38) [3]. Furthermore, fast dense matrix multiplication
algorithms operate on a ring instead of a semiring; which
makes them unsuitable for most of the graph algorithms,
especially the ones that are modeled as a path problem [1,
6].

In this paper, we present a parallel algorithm for multiply-
ing two sparse matrices over a semiring. Our algorithm uses
a 2D block data decomposition scheme for sparse matrices.
To the best our best knowledge, 2D checkerboard decompo-
sition schemes have not been studied in the context of par-
allel sparse matrix multiplication (ParSpGEMM) although
they have been proven to be useful and more efficient than
1D decomposition schemes in the dense case [2, 4]. In ad-
dition to being more efficient, 2D block decomposition has
the natural ability to express the computation as algebraic
operations on submatrices (blocks).

2. MATRIX STORAGE FORMAT
The most widely used data structures for sparse matrices
are CSC (Compressed Sparse Column) [5] and its transpose
CSR (Compressed Sparse Row). Using CSC (or CSR) in
the case of 2D block decomposed data, however, leads to
inefficiencies that can not be compensated by any algorithm
that holds its data in those formats. Assume, on the av-
erage there are c nonzero elements in each column of the
matrix. Each processor is going to have a submatrix of size
n/
√

p×n/
√

p. Storing each of the submatrices in CSC stor-
age scheme, which has O(n+nnz) space requirements, would
make the overall storage to O(n

√
p + nnz) which is a fac-

tor of
√

p worse than the optimal, compared to the space
requirements of CSC on a single processor. This situation
is depicted in Figure 1 where the number of nonzeros in a

nnz(j) = c√
p

nnz(i) = c
√

p blocks

√
p blocks

Figure 1: 2D-Decomposition of a Sparse Matrix

single column of the submatrices, nnz(j), goes to zero as
p→∞.

Consequently, we have designed a new data structure called
SparseDComp, with three main requirements in mind:

1. The storage requirements should be O(nnz)

2. It should efficiently support the sequential algorithm.

3. It should allow fast access to both columns and rows.

SparseDComp is composed of two parts: DCSR (Doubly-
Compressed Sparse Row) and DCSC (Doubly-Compressed
Sparse Column) which are derived from CSC and CSR.
Those parts can be viewed as lexicographically sorted ar-
rays. DCSR is first sorted by rows and then by columns
within each row whereas DCSC is first sorted by columns
and then by rows within each column. Here, we will go over
it using an example. Think about an 9-by-9 matrix A with 4
non-zeros which has the following representation in triplets
format:

A = {(5, 0, 0.1), (7, 0, 0.2)(3, 6, 0.3), (1, 7, 0.4)}
Note that the indices start from zero. The resulting ma-
trix A is illustrated in Figure 2 in DCSC format (DCSR is
omitted for space reasons). The AUX arrays are only re-
quired to fulfill the third requirement and not used during
the multiplication.

3. SEQUENTIAL ALGORITHM

16

NUM = 0.1 0.2 0.3 0.4

IR = 5 7 3 1

CP = 0 2 3 4

JC = 0 6 7

AUX = 0 1 3 3

Figure 2: Matrix A in DCSC format

ParSpGEMM relies on the existence of an efficient sequential
sparse matrix multiplication algorithm for doing the updates
on local submatrix that each processor has. The idea behind
SpGEMM is to use the outer product formulation of matrix
multiplication efficiently. In outer product formulation, the
ith column of A and the ith row of B is multiplied and we
get a rank-1 matrix. Our algorithm has a preprocessing
step where the intersection Isectc = A.dcsc.jc∩B.dcsr.ir is
found, which gives us the exact set of indices that we need to
do the outer product. Then, the outer product formulation
is transformed into Algorithm 1

Algorithm 1 Smart outer product formulation of C=A*B

1: Isectc = A.dcsc.jc ∩ B.dcsr.ir
2: for all i ∈ Isectc do
3: C = C + A(:, i) · B(i, :)
4: end for

We can think of each entry in Isectc as a list of size nnz(A(:
, i)) + nnz(B(i, :)). Combining this with the fact that all
the elements within a given column or row index i is sorted
according to their row or column respectively values (since
IR is sorted within every column/row), we conclude that the
problem is very similar to k-way merging where the goal is to
merge k sorted lists [1]. The only difference is that we will
never explicitly contruct the lists and we will compute their
elements one-by-one on demand. The merging algorithm
uses a heap of size k = |Isectc|, where the value of a heap
entry is its NUM value and the key of a heap entry is its
memory location in row/column major order layouts if we
were to use a dense two-dimensional array layout to describe
our matrix.

The final phase of the algorithm constructs the DCSC and
DCSR structures from that lexicographically ordered stacks.
This can be done in time O(nnz(C)) time and space as long
as the final data structure is O(nnz) as in the case of DCSC
and DCSR.

4. PARALLEL ALGORITHM
Our parallel algorithm, which is given in Algorithm 2 in
its naive form, works in a similar way with SUMMA (Scal-
able Universal Matrix Multiplication Algorithm) [4]. How-

J

K

I

K

A(i, k)
 C(i,j)

* =

B(k, j)

Figure 3: Execution of ParSpGEMM

ever, instead of broadcasting a subcolumn/subrow in ev-
ery iteration as SUMMA does, our algorithm broadcasts a
whole submatrix along the row/column. SUMMA indeed
utilized from blocking during broadcasting by sending b sub-
columns/subrows instead of one in each iteration thus reduc-
ing latency and increasing performance. The broadcasting
behavior of our algorithm may be viewed as an exaggerated
blocking case where we send b = n/

√
p subcolumns/subrows

in every iteration.

Algorithm 2 Naive ParSPGEMM

Require: A is n× n, B is n× n
1: myrow← world.rank()/

�
world.size()

2: mycol← world.rank()%
�

world.size()
3: LocalC ← zeros(n,n)

4: for k = 0 to
�

world.size() do {Executes
√

p times}
5: if k == mycol then
6: RowBroadcast(LocalA);
7: else
8: ARecv ← RecvBroadcast();
9: end if

10: if k == myrow then
11: ColBroadcast(LocalB);
12: else
13: BRecv ← RecvBroadcast();
14: end if
15: LocalC+ = ARecv ×BRecv
16: end for

5. REFERENCES
[1] A. V. Aho and J. E. Hopcroft. The Design and Analysis

of Computer Algorithms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1974.

[2] L. E. Cannon. A cellular computer to implement the
kalman filter algorithm. PhD thesis, Montana State
University, 1969.

[3] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. In STOC
’87: Proceedings of the nineteenth annual ACM
conference on Theory of computing, pages 1–6, New
York, NY, USA, 1987. ACM Press.

[4] R. A. V. D. Geijn and J. Watts. SUMMA: scalable
universal matrix multiplication algorithm. Concurrency:
Practice and Experience, 9(4):255–274, 1997.

[5] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse
matrices in matlab: design and implementation. SIAM
J. Matrix Anal. Appl., 13(1):333–356, 1992.

[6] R. E. Tarjan. A unified approach to path problems. J.
ACM, 28(3):577–593, 1981.

17

Modeling and Simulation of Protein-Protein Interactions in
the Endoplasmic Reticulum

Marc Griesemer
Department of Computer Science

University of California
Santa Barbara, CA 93106
marcgri@cs.ucsb.edu

Linda Petzold
Department of Computer Science

University of California
Santa Barbara, CA 93106
petzold@cs.ucsb.edu

ABSTRACT
This research explores modeling and simulation of cellular
systems in order to understand molecular interactions be-
tween proteins. Specifically, it models protein-protein inter-
actions involved in translocation in the endoplasmic reticu-
lum (ER) of yeast cells. This computational work comple-
ments experiments performed at the University of Delaware
and modeling work in the Doyle Group (Chemical Engineer-
ing) at UCSB.

1. INTRODUCTION
Protein-protein interactions underlie the functions of the
cell. The endoplasmic reticulum (ER) is the staging ground
for protein-related processes in eukaroytic cells. In translo-
cation, newly synthesized proteins enter the ER and are im-
mediately sought by chaperones, specific proteins that aid
in protein folding, maturation, and transport [3]. BiP is the
resident molecular chaperone in the ER of yeast (Saccha-
romyces cerevisiae). It binds to protein chains at pores on
the ER’s surface membrane and prevents them from back-
sliding out of the ER. It is not known, however, how inhomo-
geneous concentrations of BiP drive its role in translocation.
It is also uncertain to the extent BiP interacts with the co-
chaperone Sec63, which enhances BiP binding to proteins
through structural changes in the chaperone.

Our goals in this modeling effort are twofold: (1) to gen-
erate an improved understanding of protein interactions ac-
counting for spatialization and effects; and (2) to examine
molecular gradients due to inhomogeneous concentrations
of the chaperone BiP in the ER. In vivo laboratory experi-
ments at the University of Delaware will attempt to verify
our findings and allow for further refinements of the model.

2. MODELS
Modelers have attempted to discern BiP’s role in assisting
translocation of proteins into the ER. Our work is not specif-
ically concerned with the mechanism of translocation itself,
but rather how the BiP-Sec63 interaction enhances translo-
cation [2]. Experiments have posited that Sec63 recruits BiP
to the membrane surface to perform translocation. Given
that the populations of BiP and the other proteins in the
system range from tens to hundreds of thousands, a deter-
ministic model of molecular concentrations seems to be jus-
tified. To this end, we first constructed an ODE model, and
then extended it to a PDE model to capture the spatiotem-
poral dynamics.

2.0.1 ODE model
Our core model is described by a system of ordinary dif-
ferential equations (ODEs). It is a 7 state, 13 parameter
model that represents the interactions of BiP with the co-
chaperone Sec63 (J) and unfolded proteins (U), and is shown
as a schematic in Figure 1. We conducted simulations and
collected time series data of the concentrations of each state.
The results confirmed an important point; that an excess of
BiP in the ER leads to behavior in which BiP strongly in-
teracts with other proteins.

2.0.2 PDE Model
Proceeding from the ODE model, our next objective was
to describe the distribution of BiP in the ER due to spa-
tial effects. The partial differential equation (PDE) model
describes translocation. The model incorporates: (1) chem-
ical reactions representing transitions between states in the
ODE system which take place on the surface membrane (or
reaction zone), and (2) diffusion into the lumen (interior) of
the ER. This spatially dependent system of equations was
approximated by the method of finite differences (Figure 2).
The method of lines transforms the PDE into a series of
ODEs which then can be solved easily by numerical soft-
ware.

3. RESULTS
Using the DASSL(DASPK) ODE/DAE solver [1], we ran
simulations on the model until all species reached steady-
state. The system starts from conditions where all the BiP
is free and present in the reaction zone. Diffusion is fast,
equalizing the gradients of free BiP across the ER (< 1 ms).
Reactions then take place on a slower timescale (< 5 s). The
output was the concentration of each state in the reaction
zone and in the lumen.

A measurement of the ER PDE model is to determine the ra-
tio of surface concentration of BiP versus the concentration
in the lumen. This gives an indication of the homogeneity
of BiP and can be verified experimentally. The main sim-
ulation scenario is where free BiP to diffuse while the BiP
bound to the other players (namely Sec63 and unfolded pro-
tein) remains in the reaction zone. One can then attempt
to make predictions for BiP and translocation.

We found that BiP preferentially remains in the reaction
zone, with a concentration of 7.06 times than in the lu-
men of the ER. This result illustrates that BiP does interact
strongly with unfolded protein in the process of transloca-

18

U

DnaK
ATP

ADP
ATP

GrpE

ATP

U

 “J”

 “J”

Dna

 BiP

GrpE BiP

 BiP

GrpE

 “J”

 BiP “J”

ATP

ATP

 BiP

U

U

U

U

U

U

k -7

U

k 3k -3

k 6

k 4

k -1

k -2

 “J”

ATP

 BiP

X1 State X2

 X4

 X6

X3

k 7

k 2

k 1

 “J”

 BiP

ADP
U

U

X5

X7

ADP

k 8
k 9

k 5

ATP Hydrolysis

ATP Hydrolysis

P

P

ADP

ATP

Figure 1: The ODE model consisting of 7 states, representing the interaction of BiP with the other proteins
in the system.

Nucleus

Cytoplasm

ER Lumen

Annular radius = 245 nm

L = 35 nm (100 aa length)

Cytoplasm

Nucleus

ER Lumen

Annular radius = 245 nm

L = 35 nm (100 aa length)

(1) Reaction Zone

(2) Interior Diffusion
 (Free BiP)

(3) Nuclear-ER boundary

Figure 2: The PDE model consists of a surface zone
and ER lumen represented by reaction-diffusion
equations.

tion. In contrast, when translocation was inhibited, the con-
centration ratio of BiP in the ER was a base level of 1.44.

4. CONCLUSION
In creating these models, we have taken a step in making
predictions of determining the relative importance of BiP in
the translocation of proteins. The model can be extended,
if necessary, to incorporate more complicated interactions,
or to incorporate stochasticity.

5. ACKNOWLEDGEMENTS
This research was supported by NSF Grant DGE02-21715.

6. REFERENCES
[1] K. E. Brennan, S. L. Campbell, and L. R. Petzold. The

Numerical Solution of Initial Value Problems and
Differential-Algebraic Equations. SIAM Classics Series,
Philadelphia, Pennsylvania, 1996.

[2] T. Elston. Models of posttranslational protein
translocation. Biophysical Journal, 76(5):2235–2251,
May 2000.

[3] S. I. Nishikawa, J. L. Brodsky, and K. Nakatsukasa.
Roles of molecular chaperones in endoplasmic reticulum
quality control and er-associated degradation. Journal
of Biochemistry, 137(5):551–5, May 2005.

19

Searching for Rare Objects using Index Replication
Krishna P. N. Puttaswamy, Alessandra Sala and Ben Y. Zhao

Computer Science Department, U. C. Santa Barbara
{krishnap, ravenben}@cs.ucsb.edu sala@dia.unisa.it

I. I NTRODUCTION

Searching for objects is a fundamental problem faced by
unstructured peer-to-peer file-sharing networks. Various algo-
rithms such as Flooding, Random Walks [1] and their variants
have been proposed to address this problem. However, most of
these algorithms are only effective for locating popular objects,
including algorithms used by popular deployed networks such
as Gnutella and Kazaa. Studies have shown that in the widely-
used Gnutella network, as much as 18% of all queries return
no responses even when results are available [3]. Finding rare
objects (those with few replicas) in unstructured networks is
generally ineffective (in terms of search success) and ineffi-
cient (in terms of overhead and response time) compared to
similar operations in their structured counterparts.

Existing work has explored several approaches to improve
search recall. One approach is to use higher Time To Live
(TTL) for search algorithms. However, higher TTL values
significantly increases overall bandwidth consumption, and
provide diminishing returns, particularly for coarse-granular
search algorithms such as Flooding [3]. An alternative is to
utilize object replication strategies to improve search success.
But these techniques require replicating entire objects, incur-
ring significant overheads for storage and network bandwidth
and limiting their applicability.

Because these unstructured file-sharing systems account for
a major portion of traffic in today’s Internet [5], any technique
to improve search recall for rare objects must be light-weight,
effective, and easily deployable. Our focus in this work is
to answer the following question:Can we develop simple
techniques to improve the search effectiveness for rare items,
and also reduce the bandwidth overhead incurred?

We believe intelligent index replication can provide the solu-
tion to this question. Not only does proactive index replication
incur much lower overhead compared with data replication,
previous work has shown it to be effective at improving the
scalability of unstructured networks [1]. Our work explores
the use of multi-hop index replication, which can significantly
improve the cover region or effective search space of these
overlays, while incurring little overhead compared to alterna-
tives such as data replication. We explore the effectiveness
of two-hop index replication, and propose different variants
that traverse the overhead-performance tradeoff. To quantify
the impact and feasibility of our proposed techniques, we
evaluate them in a full-system Gnutella simulation using real
measurement traces.

II. SYSTEM DESIGN

Existing unstructured networks have one main problem:
they are highly limited in their efficiency to locate rare items.

Two main techniques lie at the core of our solution to this
problem: Supernode-Constrained Random Walk (SCRW), and
two-hop index replication. The main intuition behind them
is to use the high-capacity nodes to build search-freeways,
which the queries enter once and exit with the object (or its
pointer). In order to ensure that queries terminate with high
success rate, we need to efficiently place the indices on these
search-freeway nodes. Our topology construction and search
algorithms address the former while our two-hop replication
achieves the latter.

1) Topology Construction and Search: A careful inspection
of the topology construction algorithms used in state-of-the-art
overlays [1], and in deployed unstructured overlays [2], reveal
that they are similar in that they use high capacity nodes as
main paths for search and try to propagate the index from low
capacity nodes to these main paths. Based on this observation,
our algorithm uses Gia’s topology adaptation algorithm while
building the network topology and assign indegree to nodes
based on their capacity. Along with this, it tags the nodes with
very high capacity as supernodes forming a stable path with
large capacity.

In addition, we use supernode-constrained random walk
(SCRW) as our search algorithm. The main difference between
SCRW and a normal random walk is that in SCRW the nodes
always forward the query to one of its randomly selected
supernode neighbors – not just any random neighbor. If no
supernodes are found in its routing table, then the node
forwards the query to one of its neighbor selected at random.

2) Index Replication: One-hop replication is shown to scale
unstructured networks significantly. We extend this one-hop
replication to two hops in this work. Note that extending index
replication to two hops might lead to an explosion in the
amount of index stored on high-capacity nodes. So, managing
the index replication and storage overhead becomes critical.
We explore three different replication strategies.

Full replication. In this strategy, each node sends its index
to all of its one-hop neighbors in its routing table, just like
in one-hop replication. All of the one-hop neighbors, in turn,
forward this index to all of their one-hop neighbors, except the
source node. This strategy, effectively, reduces to a two-hop
flooding of indices around the nodes.

Square-root replication (Sqrt). In this strategy, each node
does a one-hop replication first. All the one-hop supernode

20

2

neighbors – only the supernode neighbors, randomly pick a
small set of their supernode neighbors and forward the index
to them. This set size is equal to the square-root of the
number of supernodes of these one-hop supernode neighbors.
Thus, this strategy is a simple one-hop replication augmented
with square-root replication only at the supernodes. The main
intuition behind this strategy is that by replicating on the
supernodes, we are favoring SCRW to find objects quickly
while reducing the amount of replication and its cost.

Constant replication. Instead of choosing different number
of supernode neighbors for replication, in this strategy, we
fix the number of supernode neighbors chosen to a constant.
Every node does a one-hop replication of indices. Following
this, all the one-hop non-supernode neighbors do another one-
hop replication, while the supernodes propagate the index to
only a constant number of their supernodes. The main reason
of choosing this algorithm is to reduce the indexing load on
supernode further.

Detailed theoretical analysis of each of these approaches can
be found in [4]. We show that Sqrt replication provides the
near-optimal tradeoff in the performance-overhead sprecturm.

III. G NUTELLA FULL -SYSTEM SIMULATION

To understand the performance of various search and repli-
cation algorithms in a real unstructured network, we simulated
a complete Gnutella-like network. To make our simulation
realistic, we obtained the network topology, the files stored
in the nodes, the number of files stored, and the file dis-
tribution from Gnutella measurement study traces [6]. We
extracted a Gnutella network topology with approximately
72K ultrapeers and 760K leafpeers from one of these topol-
ogy traces. Since the leafpeers do not participate in query
forwarding in Gnutella, we considered only the ultrapeers
in our network topology. Then we extracted the list of files
stored on 72K random nodes in the Gnutella trace and as-
signed them to the nodes in our topology. Researchers have
empirically shown that this randomized placement of files
on nodes approximately represents the real network, since
there is very little correlation between file locations and the
network topology [6]. There were approximately 27 million
files, in total, with 7 million unique files assigned to nodes in
our network. Since we are using the real traces to build our
network, the object popularity in the network follows the same
popularity we see in a real network.

To evaluate the search recall for rare objects, we pre-
processed the files on the nodes in our network and queried for
only the files with exactly 3 replicas in the network (approx.
300K of them). Furthermore, to make a fair comparison
across the different search techniques, we explicitly limited
the bandwidth that can be consumed by our tests. We limited
the number of messages that could be forwarded in the entire
network, and once this overhead cap is reached all search
messages are dropped wherever they are in the network. No
additional messages are forwarded and no new search queries
are introduced.

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10

%
 o

f S
uc

ce
ss

fu
l L

oo
ku

ps

Total message forwarding limit (X 1000000 msgs)

SCRW-2hop-Sqrt
NormalRW-1hop

Flooding

Fig. 1. Comparison of lookup success of different strategies under bandwidth
cap. Note the log scale on y-axis.

We examine the performance of three different search
algorithms in this setup. In addition to the SCRW with Sqrt
two-hop index replication and Gia’s biased randomwalk, we
implemented a simple flooding algorithm. While this flooding
technique is more reminiscent of early versions of Gnutella,
we are flooding between superpeers, unlike the original flat
Gnutella network. We experimented with different flooding
depths and found that a flooding depth of 3 provides good
performance in our experiment setup. We compare this against
a random walk depth of 500 for the Gia and SCRW. Note
that random walk with depth of 500 incurs significantly less
overhead than flooding with TTL of 3, which on average
reaches 42K nodes.

Figure 1 shows the performance of the three algorithms,
for same overhead, expressed as a percentage of total search
queries that finish successfully. We see clearly that SCRW with
Sqrt replication is more than 600 times better than simple
flooding, and nearly 200 times better than normal RW with
just one-hop replication. The improvement decreases at higher
TTL values mainly because of the diminishing returns in
lookup success experienced by SCRW.

IV. CONCLUSION

While unstructured file-sharing networks have been success-
ful at delivering popular content to its users, its low search re-
call of rare objects has limited its effectiveness and flexibility.
We explore the effectiveness of multi-hop index replication,
which is easily-deployable and lightweight in overhead. We
then evaluate our approach on a large simulation networks
from Gnutella measurements. Results show that using the same
search bandwidth as flooding techniques, our technique would
improve lookup of rare objects from less than 0.1% to more
than 80%.

REFERENCES

[1] CHAWATHE , Y., ET AL . Making gnutella-like p2p systems scalable. In
Proc. of SIGCOMM (August 2003).

[2] Limewire. http://www.limewire.org.
[3] L OO, B. T., ET AL . Enhancing p2p file-sharing with an internet-scale

query processor. InProc. of VLDB (2004).
[4] PUTTASWAMY, K. P. N., SALA , A., AND ZHAO, B. Y. Searching for rare

objects using index replication. Tech. Rep. 2007-09, UC Santa Barbara,
July 2007.

[5] SAROIU, S.,ET AL . An analysis of internet content delivery systems. In
Proc. of OSDI (December 2002).

[6] ZHAO, S., STUTZBACH, D., AND REJAIE, R. Characterizing files in the
modern gnutella network: A measurement study. InProc. of MMCN
(January 2006).

21

Evaluating the Impact of Xen on the Performance of NAS
Parallel Benchmarks

Lamia Youseffα Rich Wolskiα Brent Gordaβ Chandra Krintzα

αDepartment of Computer Science
University of California, Santa Barbara
{lyouseff, rich, ckrintz}@cs.ucsb.edu

β Lawrence Livermore National Lab (LLNL)
bgorda@llnl.gov

ABSTRACT
In this work, we investigate the efficacy of using paravir-
tualizing software for performance-critical HPC kernels and
applications. We present a comprehensive performance eval-
uation of Xen, a low-overhead, Linux-based, virtual machine
monitor, for paravirtualization of HPC cluster systems at
LLNL. We investigate subsystem and overall performance
using a wide range of benchmarks and applications. We
employ statistically sound methods to compare the perfor-
mance of a paravirtualized kernel against three Linux oper-
ating systems: RedHat Enterprise 4 for build versions 2.6.9
and 2.6.12 and the LLNL CHAOS kernel. Our results indi-
cate that Xen is very efficient and practical for HPC systems.

1. INTRODUCTION
Virtualization is a widely used technique in which a software
layer multiplexes lower-level resources among higher-level
software programs and systems. Historically, it has come
at the cost of performance due to the additional level of in-
direction and software abstraction necessary to achieve sys-
tem isolation. Recent advances in Virtual Machine Monitors
(VMM) technology however, address this issue with novel
techniques. One such technique is paravirtualization which
is the process of strategically modifying a small segment of
the interface that the VMM exports along with the OS that
executes using it. Consequently, Systems have the potential
for improved scalability and performance over prior VMM
implementations. A large number of popular VMMs em-
ploy paravirtualization in some form including Xen [6], and
VMWare [4]. VMM systems, in addition enable applica-
tion and full-system isolation (sand-boxing), OS-based mi-
gration, distributed load balancing, OS-level check-pointing,
non-native (cross-system) application execution, and sup-
port for multiple or customized operating systems.

Despite the potential benefits, performance advances, and
recent research indicating its potential [5, 10], virtualiza-
tion is currently not used in high-performance computing
(HPC). One reason for this is the perception that the re-
maining overhead that VMMs introduce is unacceptable for
performance-critical applications and systems. The goal of
our work is to evaluate empirically the degree to which this
perception is true. In particular, we rigorously investigate
the overhead imposed by the Xen paravirtualization system
for HPC systems using current HPC commodity hardware at
LLNL. In this abstract, we present our evaluation of the im-
pact of paravirtualization on the performance of NAS paral-
lel benchmarks (NPB). NPB evaluate the efficency of highly

parallel HPC systems in handling crtitical operations that
are part of the simulation of future space missions.

2. METHODOLOGY
Our experimental hardware platform consists of a four-node
cluster of Intel Extended Memory 64 Technology (EM64T)
machines. Each node consists of four Intel Xeon 3.40 GHz
processors, with a 4GB of RAM. The nodes are intercon-
nected with an Intel PRO/1000, 1Gigabit Ethernet network
fabric. We perform our experiments by repeatedly executing
the benchmarks for 50 runs and collecting the performance
data to compute the average across runs. In addition, We
perform a t-test at the α ≥ 0.95 significance level to compare
the means of two sets of experiments.

We empirically compare four different HPC Linux operating
systems. The first two are current releases of the RedHat
Enterprise Linux 4 (RHEL4) system: v2.6.9 and v2.6.12. We
also evaluate the CHAOS kernel. CHAOS is the Clustered,
High-Availability, Operating System [3] from LLNL, which
is based on RHEL v2.6.9. Our Xen-based Linux kernel is
RHEL4 v2.6.12 with a Xen 3.0.1 patch.

We used a set of HPC benchmarks, which consists of micro,
macro-benchmarks, and real HPC applications to evaluate
the performance of the different subsystems as well as the
full system. Our micro-benchmark subset includes programs
from the HPC Challenge and LLNL ASCI Purple Bench-
mark suite, and are specifically designed to evaluate distinct
performance characteristics of the different subsystems; in-
cluding computational, communicational, memory and disk
I/O characteristics. To evaluate the full system, we employ
several popular macro-benchmarks from the NAS Parallel
benchmark suite [2]. We also used a real HPC application,
but we include here only the performance analysis of the
NPB benchmarks due to space limitation. For the detailed
study, readers are encouraged to refer to our papers [7, 8,
9].

3. NPB PERFORMANCE ANALYSIS
NAS parallel benchmarks (NPB) mimic the computational,
communicational and data movement characteristics of large
scale computational fluid dynamics applications. Figure 1
shows the performance of the NPB codes (x-axis) for our
different kernels relative to CHAOS (y-axis). EP, IS and
MG are the Embarrassingly Parallel, Integer Sort, and Multi
grid codes respectively, while LU is the Linear solver code
and CG is the Conjugate gradient code. We present two

22

different metrics for each of the five benchmarks. The left
five sets of bars reflect total execution time (lower is better),
while the right five are for the total millions of operations per
second (Mops) the benchmarks achieve (higher is better).

All of the kernels perform similarly for EP, IS, and MG. The
little differences between the bars, though visually different
in some cases, are not statistically significant using the t-
test. This is interesting since the benchmarks are very dif-
ferent in terms of their behavior: EP performs distributed
computation with little communication overhead, IS per-
forms a significant amount of communication using collec-
tive operations, and MG employs a large number of blocking
send operations. In all cases, paravirtualization imposes no
statistically significant overhead.

0.8

0.9

1

1.1

1.2

EP IS MG LU CG EP IS MG LU CG

P
er

fo
rm

an
ce

 in
 t

im
e

an
d

 t
o

ta
l M

o
p

s
re

la
ti

ve
 t

o
 C

H
A

O
S

 k
er

n
el

CHAOS kernel
Xen kernel
RHEL269 kernel
RHEL2612 kernel

Total Time Total Mops

Figure 1: shows the NAS Parallel benchmarks per-

formance relative to CHAOS.

On the other hand, LU decomposition shows a performance
degradation of approximately 5% for RHEL2.6.12 for both
total time and Mops. The reason for this is due to overhead
this kernel places on computation. CHAOS optimizes this
overhead away and RHEL2.6.9 makes up for this loss due
to its low overhead on MPI-based network latency.Xen im-
plements a different CPU scheduling policy: a very efficient
implementation of the borrowed virtual time (BVT) sched-
uler [1]. However, Xen network performance places a subtle
performance penalty on MPI-based LU code performance.
A combination of the scheduling policy and network perfor-
mance enabled by Xen enables the Xen system to avoid the
overhead which was endured by RHEL2.6.12.

The Conjugate Gradient (CG) code computes an approxi-
mation to the smallest eigenvalue of a large sparse matrix.
CG executes slower using CHAOS than using the other ker-
nels by about 5%. The statistical difference however was not
significant. In summary, Xen performs consistently compa-
rable to CHAOS and the two RHEL kernels and delivers
performance similar to that of natively executed parallel ap-
plications.

4. CONCLUSIONS
Paravirtualizing systems such as Xen, expose opportuni-
ties for improved maintenance and customization for HPC
systems. In this work, we evaluate the overhead of using
Xen in an HPC environment. We compare three different
Linux configurations against a Xen-based kernel. We per-
form experiments using micro- and macro-benchmarks from

the HPC Challenge, LLNL ASCI Purple, and NAS parallel
benchmark suites among others, as well as using a large-
scale, HPC application for simulation of oceanographic and
climatologic phenomena. As a result, we are able to rigor-
ously evaluate the performance of Xen-based HPC systems
relative to non-virtualized system for subsystems indepen-
dently and in ensemble. Our results indicate that, in general,
the Xen paravirtualizing system poses no statistically signif-
icant overhead over other OS configurations currently in use
at LLNL for HPC clusters – even one that is specialized for
HPC clusters

As part of future work, we are investigating techniques for
high-performance check-pointing and migration of full sys-
tems to facilitate load balancing, to isolate hardware error
management, and to reduce down time for LLNL HPC clus-
ters. We are also investigating techniques for automatic
static and dynamic specialization of OS images in a way
that is application-specific [5, 10].

5. REFERENCES
[1] K. Duda and D. Cheriton. Borrowed-virtual-time

(BVT) scheduling: supporting latency-sensitive
threads in a general-purpose schedular. In Symposium
on Operating Systems Principles, pages 261–276, 1999.

[2] D. B. et al. The NAS Parallel Benchmarks 2.0. The
International Journal of Supercomputer Applications,
1995.

[3] R. B. et al. Achieving Order through CHAOS: the
LLNL HPC Linux Cluster Experience, June 2003.

[4] J. Sugerman et al. Virtualizing I/O devices on
VMware workstations hosted virtual machine monitor.
In USENIX Annual Technical Conference, 2001.

[5] C. Krintz and R. Wolski. Using phase behavior in
scientific application to guide linux operating system
customization. In Workshop on Next Generation
Software at IEEE International Parallel and
Distributed Processing Symposium (IPDPS), April
2005.

[6] P. Barham et al. Virtual machine monitors: Xen and
the art of virtualization. In Symposium on Operating
System Principles, 2003.

[7] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Evaluating the performance impact of xen on mpi and
process execution for hpc systems. In Proceedings of
the First International Workshop on Virtualization
Technology in Distributed Computing (VTDC),
November 2006.

[8] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Paravirtualization for hpc systems. In Proceedings of
Workshop on XEN in HPC Cluster and Grid
Computing Environments (XHPC) best paper award
winner, December 2006.

[9] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Paravirtualization for HPC Systems. Technical Report
Technical Report Numer 2006-10, Computer Science
Department University of California, Santa Barbara,
Aug. 2006.

[10] L. Youseff, R. Wolski, and C. Krintz. Linux kernel
specialization for scientific application performance.
Technical Report UCSB Technical Report 2005-29,
Univ. of California, Santa Barbara, Nov 2005.

23

	GSWC cover 2007_v3
	GSWC cover 2007_v4
	all_papers
	3dintrospection
	viks-53
	patterson_gsw
	fang-gsrc07_1
	Camera-Light Pairs(Daniel Vaquero)
	google_invited_talk
	susmit-iiswc_paper
	marco-swaddler_gswc07
	gsrc-aydin
	GWSC_Final_MarcGriesemer_Sept24
	kp-evolution
	GSRW-2nd-XenHPC

