

GSWC 2008

Proceedings of

The Third Annual Graduate

Student Workshop on Computing

October 3rd, 2008
Santa Barbara, California

Sponsored by

 Department of Computer Science & Corporate Affiliates Program
University of California, Santa Barbara

http://www.cs.ucsb.edu, http://www.industry.ucsb.edu

Fred Chong, Advisor

Cha Lee, Co-chair/Industry Liaison

Bita Mazloom, Co-chair/Publishing Chair

Petko Bogdanov, Review Chair

Chris Coffin, Local Arrangement

Ramya Raghavendra, General Committee

Yenting Ng, General Committee

Mohit Tiwari, General Committee

Fang Yu, General Committee

Organized by

iii

Sponsored by

iii

Keynote Speakers

Peter Norvig, Google Research Director

Peter Norvig is a Fellow of the American Association for Artificial Intelligence and the

Association for Computing Machinery. At Google Inc he was Director of Search

Quality, responsible for the core web search algorithms from 2002-2005, and has been

Director of Research from 2005 on. Previously he was the head of the Computational

Sciences Division at NASA Ames Research Center, making him NASA's senior

computer scientist. He received the NASA Exceptional Achievement Award in 2001.

He has served as an assistant professor at the University of Southern California and a research faculty member

at the University of California at Berkeley Computer Science Department, from which he received a Ph.D. in

1986 and the distinguished alumni award in 2006. He has over fifty publications in Computer Science,

concentrating on Artificial Intelligence, Natural Language Processing and Software Engineering, including the

books Artificial Intelligence: A Modern Approach (the leading textbook in the field), Paradigms of AI

Programming: Case Studies in Common Lisp, Verbmobil: A Translation System for Face-to-Face Dialog, and

Intelligent Help Systems for UNIX. He is also the author of the Gettysburg Powerpoint Presentation and the

world's longest palindromic sentence.

Barney Pell, Microsoft Live Search Powerset

Barney Pell is Partner, Search Strategist and Evangelist at Microsoft. Dr. Pell was most

recently Founder, CEO and CTO of Powerset, a VC-funded natural-language search

company. Dr. Pell co-founded Powerset in 2005 after spending a year as Entrepreneur

in Residence at Mayfield, a top venture capital firm in Silicon Valley. Powerset

licensed and commercialized natural language technology developed over 30 years at

Xerox PARC, growing to 70 people before being acquired by Microsoft in August

2008. Dr. Pell is a recognized expert and frequent speaker on topics including AI, search, and semantic

technology. For over twenty years, Dr. Pell has pursued technical and commercial innovation in Artificial

Intelligence as a researcher, manager, strategist and entrepreneur. Before joining Mayfield, Dr. Pell worked

for NASA Ames Research Center as a Principal Investigator and Area Manager responsible for innovation in

autonomous systems, human-centered computing, spoken dialog systems, search, collaboration, and the

semantic web. Highlights of innovations during Dr. Pell’s career at NASA include the development of the

Remote Agent, the first AI system to fly onboard a deep space probe, mission critical software to support

planning and science collaboration for the Mars Exploration Rovers mission, and Clarissa, the first spoken

dialog system to fly in space.

Dr. Pell’s research experience also includes time in the natural language processing group at SRI International,

at the Swedish Institute for Computer Science, and at the Electro-Technical Laboratory in Japan. His

entrepreneurial experience also includes serving as Chief Strategist and Vice-President of Business

Development at StockMaster.com, a provider of internet-based stock-market analysis tools, and Vice

President of Strategy for Whizbang! Labs, a provider of advanced text processing and search engine software.

Dr. Pell also serves as an advisor or board member to several startup companies and educational nonprofits.

iv

Discussion Panel

Arnab Bhattacharjee, Director of Engineering
for Yahoo! Search Technology

Arnab is a search technology leader at Yahoo with 10 years of experience at Inktomi and then

Yahoo Search. He leads a team of software engineers building crawling, web graphing and

structured information extraction technology for web search. He received his BS in Computer

Science from the Indian Institute of Technology and an MS in Computer Science from the

University of Pennsylvania.

Herb Wildfeuer, Principal Engineer at Cisco
Systems

Herb Wildfeuer is Principal Engineer in the Access Routing Technology Group of Cisco

Systems. Herb is also Site Manager of the Goleta offices of Cisco that host the Voice and

Video Digital Signal Processing engineering teams. Herb is currently involved in

technology and product development in the fields of unified communications, IP telephony,

video conferencing and IP video surveillance. Herb received the inaugural Pioneer

Technology Award at Cisco for his innovative work in the area of Voice over IP and holds 11 patents in the

area of IP telephony.

Thorsten von Eicken, CTO and Founder of
RightScale

Before joining RightScale Inc., Thorsten was Chief Architect at Expertcity.com and Citrix

Online, makers of GoToMyPC, GoToMeeting, GoToWebinar, and GoToAssist. He was

responsible for the overall architecture of these online services and also managed the 24/7

datacenter operations which allowed him to acquire deep knowledge in deploying and

running secure scalable online services. Thorsten received his Ph.D. from UC Berkeley and was a professor of

computer science at Cornell University.

Simon Towers, Director of Adobe's Advanced
Technology Labs

Simon is a director of a research lab at Adobe Systems. His research interests include the

technologies for building Rich Internet Applications (ranging from virtual machines,

compilers and development environments to security and web analytics) as well as advancing

the notion of electronic documents (for example, dynamic re-layout to target different

devices). At Adobe, he has also undertaken such tasks as leading the CEO's Technology

Council and running programs to evaluate startup companies and emerging technologies. Prior to joining

Adobe, he has worked for HP Labs and Microsoft. He has a DPhil from Oxford University.

v

Table of Contents

GSWC 2007 Sponsors iii

GSWC 2007 Bio of Keynote Speakers iv

GSWC 2007 Bio of Discussion Panel v

Presenters

Morning Session

• Catching Elephants with Mice: Sparse Sampling for
Monitoring Sensor Networks

Sorabh Gandhi

1

• Data Stream Operators Under the Scanner: Challenges and
Insights towards Efficient Parallelization

Sudipto Das

3

• Symbolic Encoding of String Lengths

Fang Yu

5

• Fast Annotation and Modeling with a Single-Point Laser
Range Finder

Jason Wither

7

• Mergeable-Cache: Exploiting Data-Similar Executions in
Multicore Processors

Susmit Biswas

9

Afternoon Session

• Whiteboard Computing: Towards A Sketch-Centric Operating
Environment

Ryan Dixon

11

• MyDepressedSpace: Classification and Search on MySpace Pages

Kathy Macropol

13

• Are Your Votes Really Counted? Testing the Security of
Real-world Electronic Voting Systems

Marco Cova

15

• Quantum Online Memory Checking

Qingqing Yuan

17

• Managing Big Dataflow Tags with a Small Cache of Large Ranges

Mohit Tiwari

19

Posters

• Automated Verification of MVC Web Applications

Chris Bunch

21

• CycleNet: Empirical Analysis of 802.15.4 in Mobile

Navraj Chohan

23

• EUCALYPTUS

Chris Grzegorczyk

25

• Analyzing Performance and Efficiency of Smoothed Particle
Hydrodynamics

Rama C. Hoetzlein

27

• Client and Server Verification for Web Services Using
Interface Grammars

Graham Hughes

29

• Accelerating Stochastic Simulation Algorithm for
Chemically Reacting Systems on the Graphics Processing
Unit

Hong Li

31

• Multimodal Photo Annotation and Retrieval on a Mobile
Phone

JieJun Xu

33

• MeshMon: A Multi-tiered Framework for Wireless Mesh
Network Monitoring

Ramya Raghavendra

35

• FreeMAC: Implementing a Multi-Channel TDMA MAC on 802.11
Hardware

Ashish Sharma

37

• CoBRa: Content Based Ranking for Documents

Vishwakarma Singh

38

• Depth Compositing for Augmented Reality

Jonathan Ventura

40

• Strategy-Proof Wireless Spectrum Auctions

Xia Zhou

42

Catching Elephants with Mice:
Sparse Sampling for Monitoring Sensor Networks

Sorabh Gandhi
Department of Computer

Science
UC Santa Barbara

sorabh@cs.ucsb.edu

Subhash Suri
Department of Computer

Science
UC Santa Barbara
suri@cs.ucsb.edu

Emo Welzl
Department of Computer

Science
ETH Zurich

emo@inf.ethz.ch

ABSTRACT
We propose a scalably efficient scheme for detecting large-
scale physically-correlated events in sensor networks. Specif-
ically, it is shown that in a network of n sensors arbitrarily
distributed in the plane, a sample of O(1

ε
log 1

ε
) sensor nodes

(mice) is sufficient to catch any, and only those, events that
affect Ω(εn) nodes (elephants), for any 0 < ε < 1, as long
as the geometry of the event has a bounded VC-dimension.
In fact, the scheme is provably able to estimate the size of
an event within the approximation error of ±εn/4, which
can be improved further at the expense of more mice. We
support the theory developed with extensive simulations.

1. INTRODUCTION
Sensor networks are enablers of what has been called sen-
sory ubiquity or omnipresence: tiny, inexpensive, untethered
sensor devices can measure and observe various environmen-
tal parameters, often in hazardous or humanly inaccessible
places, thereby allowing real-time and fine-grained monitor-
ing of physical spaces around us. Many potential applica-
tions of this technology relate to surveillance [1] or envi-
ronmental monitoring [2], necessitating large-scale networks
spanning wide-spread geographical areas. In many of these
applications, the phenomena of interest are global in the
sense that they are not discernible at the level of individual
nodes, and require corroborative input from many sensors—
that is, events only become significant if sensed data of many
nodes support them. Indeed, this issue of making global in-
ferences from local data is characteristic of many distributed
systems, but it takes on a uniquely geometric form due to
the physical embedding of sensor networks. As an example,
imagine a sensor network in an environmental monitoring
application, e.g., to detect wild fires in a forest or to track
pollution levels in a habitat [5]. An abnormal or above av-
erage sensor reading at a single node, or even several but
widely scattered nodes, is hardly a cause for concern, as lo-
cal and temporal variations are routine in nature. On the
other hand, abnormal measurements by a large number of
nodes concentrated in a geographical neighborhood suggest
a significant event that may require immediate action. One
can imagine many other examples of this kind: sudden en-
ergy drop among sensor nodes in a neighborhood, abnormal
congestion in a region, correlated changes in the sensed data
at nodes in a neighborhood, and so on. Since a centralized
data collection approach, where a central processor continu-
ously collects signals from all the nodes and learns the state
of the network, does not scale well with the size and the com-
plexity of large scale sensor networks, we seek more efficient
solutions. In a nutshell, our approach will be to monitor only
a small subset (sparse sample) of the nodes in the network,
and infer the presence or absence of a significant event just

from the signals received from this subset.

2. PROBLEM DESCRIPTION AND NOTA-
TION

Suppose a set S of n sensor nodes is distributed in the two-
dimensional plane. We will model each sensor as a point,
with (xi, yi) as its coordinates. We make no assumption
about the distribution of these points (sensors), so our re-
sults will hold for all, even adversarial, sets. In addition,
there is one distinguished node u that acts as the central
processing node, or the base station, and knows the locations
of all the sensors in the network. A simple and abstract way
to model an event is as a binary function over the xy-plane.
We imagine that the function has value 1 over some geo-
graphical neighborhood (denoting the extent of the event)
and 0 elsewhere.

Let E ⊆ S be the set of nodes with boolean value 1. We call
E a large event or, metaphorically, an elephant if |E| ≥ ε|S|,
for a predefined user parameter ε, where 0 < ε < 1. That
is, if at least ε fraction of the nodes are affected by the
event, then we call it an elephant. Our goal is to choose a
subset M ⊆ S of sensors as monitors, or mice, and design
an algorithm A such that, given only the boolean values for
the nodes of M , the algorithm A can always decide whether
an event is an elephant or not. Such a solution will be useful
and scalable if the size of the set M is significantly smaller
than the network size |S|. A moment’s reflection, however,
makes it clear that unless the elephants are somehow“nicely
shaped,” one cannot hope to catch them all by a sparse, or
even linear size, sample. Indeed, even if we choose half of
all the sensors as mice, the adversary can create an event
E that includes all the remaining nodes, and the algorithm
has no way to detect this elephantine event.

We use Vapnik-Chervonenkis (VC) dimension from compu-
tational geometry and statistics [4, 6] to charecterize the
complexity of shapes. A pair (X ,R) is called a range space
if X is a ground set and R is a family of subsets of X . The
elements of the set R are often called the ranges. In our
setting, X is the set of sensor nodes S, and R is a collection
of subsets that arise from the events that we wish to detect.
Given a subset A ⊆ X , we say that the set A is shattered by
the set of ranges R if all 2|A| subsets of A can be obtained
by intersecting A with an appropriate member of R. That
is, for every subset B ⊆ A, there exists a range R ∈ R, such
that B = A ∩ R. The VC dimension of the range space
(X ,R) is the cardinality of the largest set A ⊆ X that is
shattered by R. The main connection of VC-dimensions to
our problem is through the concept of ε-nets, which are de-
fined as follows. Given a range space (X ,R), a subset B ⊆ X
is called an ε-net for X if, for any range in r ∈ R, whenever

1

Actual Cut
Non-sentinals

Dead Sentinals
Live Sentinals
Detected Cut

Actual Cut
Non-sentinals

Dead Sentinals
Live Sentinals
Detected Cut

Actual Cut
Non-sentinals

Dead Sentinals
Live Sentinals
Detected Cut

Figure 1: The figure shows detection of ellipse-shaped events on three different data sets: clustered, Lake,
and Temperature. The maximum estimation error in these examples is again less than 0.01n, while the target
approximation guarantee is 0.1n. The clustered data set has 2000 datapoints in clusters, the lake dataset
consists of 2500 datapoints on the digitized boundary of Lake Huron, and the temperature dataset consists
of 2000 randomly placed points on the boundary of temperature contour. In this picture, live sentinals refers
to the mice for which the function value is 0 and dead sentinals refers to those with binary function value 1.
The dotted line refers to the event detected and the solid line refers to the actual event.

|r∩X| ≥ ε|X |, we also have that r∩B %= ∅. In other words,
a subset B is an ε-net if it has a non-empty intersection with
any range that is an elephant. The ε-net theorem of Hausler-
Welzl [4] shows that O(d

ε
log d

ε
) independent random draws

from X , gives us an ε-net.

These ε-nets can be used to solve the problem described
above but they suffer from false alarms. The scheme has
no guarantee that the events caught are elephants. This is
because the ε-nets offer only a one-sided guarantee: they
only tell us that whenever a large event occurs, at least one
node of the ε-net will also detect it. And this is the main
contribution of this paper, we ensure a two sided guarantee,
with not much increase in size. In the next section we de-
scribe the scheme used to detect elephants and charecterize
the size of the sample set required.

3. CATCHING ELEPHANTS WITH GUAR-
ANTEES

We use the fact that the symmetric difference of pairs of
ranges has bounded VC dimension (See [3] for proof). For
ease of presentation, we will frame our discussion in terms of
circular ranges, but it will be self-evident that the approach
is completely general. The following algorithm is used to
detect the elephants, where d is the maximum VC-dimension
of the event we are trying to catch.

CatchElephants (S, d, ε)

1. Let d′ = O(d log d) be the dimension of the symmet-
ric difference of range spaces derived from dimension
d ranges. Construct an ε

4
-net for S of dimension d′

(either by random sampling or deterministically).

2. Let M be the set of nodes chosen as the ε

4
-net, namely,

our monitors or mice. Let T ⊆ M be the subset of
monitors with boolean value 1—this is the intersection
of the event with our monitoring set.

3. Compute a disk D containing the locations of all the
nodes in T and excluding the locations of all the nodes
in M \ T .

4. Compute the size K = |S∩D|, the number of sensors in
the network that lie inside the disk D. If K ≥ 3εn/4,

then report the event as an elephant, with K as its
predicted size. Otherwise, the event is not an elephant.

The following theorem establishes the correctness of this al-
gorithm, and proves that the algorithm catches all events of
size at least εn (the elephants) and never reports an event
of size less than 1

2
εn) (two-sided guarantee). (See [3] for

proof.)

Theorem 1. Let E be an event in the sensor network,
and let K be its size estimated by the algorithm CatchEle-

phants. Then,

(K −
εn
4

) ≤ |E| ≤ (K +
εn
4

).

To give a taste of simulation results for this algorithm, Fig-
ure 1 shows events of a single shape family (ellipse) on three
widely different data sets: clustered, lake, and temperature.
We can see that our scheme performs quite well, and returns
a plausible event boundary that is very close to the truth.
For more detailed simulations, we point the reader to [3].

4. REFERENCES
[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, et al. A

line in the sand: A wireless sensor network for target
detection, classification, and tracking. Computer
Networks, 46(5):605–634, 2004.

[2] A. Dhariwal, B. Zhang, B. Stauffer, C. Oberg, et al.
NAMOS: Networked aquatic microbial observing
system. In ICRA, 2006.

[3] S. Gandhi, S. Suri, and E. Welzl. Catching elephants
with mice: sparse sampling for monitoring sensor
networks. In SenSys, 2007.

[4] D. Haussler and E. Welzl. Epsilon-nets and simplex
range queries. Discrete & Computational Geometry,
2:127–151, 1987.

[5] K. Mayer, K. Ellis, and K. Taylor. Cattle health
monitoring using wireless sensor networks. In IASTED
CCN, 2004.

[6] V. Vapnik and A. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its
Applications, 16:264–280, 1971.

2

Data Stream Operators Under the Scanner: Challenges
and Insights towards Efficient Parallelization ∗

Sudipto Das Shyam Antony Divyakant Agrawal Amr El Abbadi
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106, USA

{sudipto, shyam, agrawal, amr}@cs.ucsb.edu

ABSTRACT
Applications involving analysis of data streams have gained
significant popularity and importance. In spite of the abun-
dance of these algorithms, all known algorithms for answer-
ing data stream queries are sequential in nature. But the
advent of multi-core architectures and their ubiquitous pres-
ence requires algorithms that can exploit the parallelism of
these architectures. In this paper, we explore the challenges
in parallelizing stream operators, in particular frequent el-
ements and top-k queries, in the context of the parallelism
offered by multi-core processors. We first analyze the dif-
ferent problems that arise when dealing with intra-operator
parallelism and summarize the insights obtained from the
different parallelization efforts. From the designs evaluated
in this paper, it is evident that intra-operator parallelism is
not intuitive and would require a redesign of the system.

1. INTRODUCTION
Data stream analysis forms an important class of appli-

cations where the data is streaming in, and processing has
to be done in real time. An important distinction of data
stream applications when compared to conventional database
applications is that the stream algorithms can only make a
single pass through the stream of tuples and since the stream
can be potentially infinite, only a summary of the stream is
stored instead of the entire stream. Analysis of the click
streams in internet advertising is a good example of stream
processing and its requirements. In Internet advertising, for
determining the Effective Cost Per Click for an advertise-
ment and in turn deciding which advertisements to display,
a publisher needs to have an estimate of the number of im-
pressions (the number of times an advertisement is rendered
on the web page), and the Click Through Rate (i.e. the num-
ber of times the advertisement was clicked). This analysis
requires real time frequency counting on the stream of clicks
that is seen by the publisher.

Frequent elements [2, 5] and top-k [1, 2] queries are an
important class of queries for stream analysis applications,
and the research community has proposed different algo-
rithms for answering these queries efficiently [1, 2, 4, 5]. A
frequent elements query is interested in the elements whose
frequency of occurrence is above a certain threshold. For ex-
ample, a query of the form “advertisements that are clicked
more than 0.1% of the total clicks” is a frequent elements
query. On the other hand, a top-k query is interested in the

∗This work is partly supported by NSF Grants IIS-0744539,
IIS-0223022 and CNS-0423336

k elements with the highest frequency at the instant when
the query is being answered. Again, a query of the form
“Top-25 most clicked advertisements” is a Top-k query.

Even though numerous algorithms have been proposed in
the literature to answer these queries, all the proposed al-
gorithms are serial in nature. But processor architectures
have seen a recent shift in design where a single processor
now consists of multiple cores which can execute instruc-
tions in parallel. The ubiquitous presence of these proces-
sors in almost all commodity as well as high-end computers
necessitate the algorithms to be concurrent, so that multiple
threads executing in parallel can efficiently exploit the avail-
able parallelism. In addition to inter-operator parallelism,
where multiple operators execute independently and can ex-
ecute in parallel on the different cores, intra-operator paral-
lelism – where a single operator aims to utilize the available
cores to improve the throughput of processing – is also im-
portant for long standing queries operating on huge amount
of data. Data stream queries are typical examples of these
long standing queries and are thus candidates for possible
intra-operator parallelism.

In this paper, we explore the challenges in parallelizing
stream operators, in particular frequent elements and top-
k queries, in the context of the parallelism offered by the
multi-core processors. We consider the Space Saving algo-
rithm [5] which has a nice property that it can answer both
the frequent elements and top-k queries. The rest of the
paper explains the intuitive schemes for parallelizing this al-
gorithm and provides insights into the different challenges
in parallelization of frequent elements and top-k queries.

2. CHALLENGES IN PARALLELIZATION
The Space Saving algorithm [5] provides a fast and effi-

cient technique for computing and answering the frequent
elements and top-k queries over a stream. The algorithm
provides an “integrated” solution for answering of frequent
elements and top-k queries and requires O(1

ε) space, where ε
is the user specified error bound, and uses a structure called
Stream Summary [2, 5] for maintaining the counters and
keeping them sorted by the frequency of occurrence. In this
section, we discuss the intuitive parallelization schemes of
the Space Saving algorithm. These schemes are based on
the way the threads share the Stream Summary structure,
which would in turn determine how the threads execute the
algorithm.

2.1 Independent Structures
This design corresponds to the shared nothing paradigm,

3

0 5 10 15 20 25 30 350

0.5

1

1.5

Number of Threads

Sp
ee

du
p

Zipf α = 1.5
Zipf α = 2.0
Zipf α = 2.5
Zipf α = 3

(a) Independent Structures

0 5 10 15 20 25 30 350

0.2

0.4

0.6

0.8

1

Number of Threads

Sp
ee

du
p

Zipf α = 1.5
Zipf α = 2.0
Zipf α = 2.5
Zipf α = 3

(b) Shared Structures

Figure 1: Intuitive parallelization schemes for the
Space Saving algorithm. Speedup compared to a sin-
gle thread of execution.

where the threads do not share any data or state informa-
tion. The idea is to simulate sequential execution, and run
multiple copies of the same algorithm executing on different
partitions of data and eventually aggregating the results for
answering the queries. It must be realized that there are two
parts of the Space Saving algorithm, the frequency counting
part, which counts the number of occurrences of an element,
and the query part, where the frequency counts are used to
answer the queries. Even though the frequency counting
part can execute really in parallel, the local structures need
to be merged to answer queries, and the frequency of merg-
ing the counters depends on the query frequency required
by the application. As the number of parallel threads in-
creases, the cost of frequency counting decreases, but the
cost of merging increases. Figure 1(a) depicts this tradeoff.
In this experiment, a stream of 5 million elements is pro-
cessed, and a query is made every 50, 000 elements. The
experiments are performed on an Intel QuadCore proces-
sor having 4 cores. The merge cost corresponds to a single
merge – serial merge refers to a single thread merging all
the structures, while hierarchical merge refers to a parallel
merge similar to the merge phase of the mergesort algo-
rithm. As is evident from Figure 1(a), this approach is not
very scalable. This is because as the number of threads in-
creases, the merge cost increases and so does the memory
requirement, since the structure is replicated locally for all
threads. The merge cost will increase further as the merge
frequency increases.

2.2 Shared Structure
This design aims at solving the scalability issues of the

algorithm described in Section 2.1. The intuitive solution is
to use a shared Stream Summary structure. Since multiple
threads are accessing the same structure, the threads must
synchronize. Synchronization is achieved using locks and

atomic operations supported by the underlying architecture.
Figure 1(b) shows the same experiment (as in Section 2.1)
for the shared structure. As is evident from Figure 1(b),
using a shared structure does scale but the time taken is
higher compared to those in Figure 1(a). This is because
the threads spend a large fraction of the time contending
for the shared resources, and since a large number of locks
are being acquired and released, the overhead of locking and
waiting for locks constitutes a significant portion of the time
consumed.

It must be noted that in both the sub-figures in Figure 1,
only the frequency counting time is reported, adding queries
would only add to the overhead and further deteriorate the
performance of the algorithms.

3. ANALYSIS AND INSIGHTS
It is evident from the experiments in Section 2 that the in-

tuitive techniques for parallelization of the frequent elements
and top-k queries do not scale with the number of available
threads (or cores). This is of particular concern since the
number of cores (or hardware threads) show a trend of dou-
bling every processor generation. It further reiterates the
significance of a scalable algorithm for the parallelization of
stream operators so that they can exploit the available par-
allelism. An important observation from the intuitive paral-
lelization schemes is that we need more than a“map-reduce”
(analogous to the “independent” design in Section 2.1) or
simple sharing (Section 2.2) for obtaining scalable perfor-
mance. It must be noted that the threads are part of the
same system. Therefore, instead of the threads contending
with each other for shared resources, if the threads can be
made to co-operate with each other, the overhead of con-
tention is reduced, and the threads co-operate to perform
useful operations instead of waiting for shared resources to
become available. Therefore if the system is modeled based
on the principles of Delegation (if multiple threads are con-
tending for a shared resource, only one thread acquires the
resource and all other threads delegate the request for that
resource to the thread that has acquired the resource) and
Minimal Existence (if a thread has acquired a resource, it
will not contend with any other shared resource, and wher-
ever required it will delegate requests to avoid contention),
the contention overhead of the shared structure can be elimi-
nated, while still retaining the advantages of a shared struc-
ture (i.e. small memory footprint and no merge cost). A
detailed description and evaluation of the proposed tech-
nique are beyond the scope of the present paper and can be
found in a separate technical report [3].

4. REFERENCES
[1] Das, G., Gunopulos, D., Koudas, N., and Sarkas, N. Ad-hoc

top-k query answering for data streams. In VLDB (2007),
pp. 183–194.

[2] Das, S., Agrawal, D., and Abbadi, A. E. CAM Conscious
Integrated Answering of Frequent Elements and Top-k Queries
over Data Streams. In DaMoN (Vancouver, Canada, 2008),
pp. 1–10.

[3] Das, S., Antony, S., Agrawal, D., and Abbadi, A. E. CoTS: A
Scalable Framework for Parallelizing Frequency Counting over
Data Streams. Tech. rep., UCSB.

[4] Manku, G. S., and Motwani, R. Approximate frequency counts
over data streams. In VLDB (2002), pp. 346–357.

[5] Metwally, A., Agrawal, D., and Abbadi, A. E. An integrated
efficient solution for computing frequent and top-k elements in
data streams. ACM Trans. Database Syst. 31, 3 (2006),
1095–1133.

4

Symbolic Encoding of String Lengths

Fang Yu
University of California, Santa

Barbara
yuf@cs.ucsb.edu

Tevfik Bultan
University of California, Santa

Barbara
bultan@cs.ucsb.edu

Oscar H. Ibarra
University of California, Santa

Barbara
ibarra@cs.ucsb.edu

ABSTRACT
We present a novel construction for length automata which
accept the unary or binary representations of the length of
a regular language. The construction can be used for verifi-
cation of systems having unbounded strings and integers.

1. MOTIVATION
This project is motivated by an increasing interest in static

analysis for real-world programs [1,4]. We model these pro-
grams as infinite state systems having string and integer
variables and present an automata-based approach for ver-
ification of these systems. Particularly, we are interested in
the relationship among the values of integer variables and
the lengths of strings. In general, the precise analysis of in-
finite state system is undecidable due to the fact that the
values of integer variables are unbounded, the lengths of
string variables are unbounded, and the reachability analy-
sis of such infinite state systems is undecidable. To overcome
this complexity hurdle, checking these infinite-state systems
can be achieved by encoding infinite sets of states as reg-
ular languages and computing conservative approximations
of the reachable states. A conservative approach is com-
monly adopted using deterministic finite automata (DFAs)
to approximate the set of string values that string variables
can take at certain program points, as well as to widen the
arithmetic constraints that symbolically represent the set
of values that integer variables can take. Previous works on
static analysis of infinite state systems focus on either string
variables [1,3,6] or integer variables [2,5]. We are interested
in both. We adopt [6] to deal with string variables and
its operations, and [2] for integer variables. Both infinite
states of string and integer variables are approximated as
regular languages and encoded as DFAs. In addition, we in-
vestigate the length constraint on the language accepted by
a string automaton. Based on this constraint, one can catch
the relation among the lengths of string variables and the
values of integer variables. We believe this relation can be
used to perform sophisticated verification on systems having
unbounded string and integer variables.

In this abstract, we show that the length of the language
accepted by a DFA forms a semiliner set. Given an arbitrary
DFA, we are able to construct DFAs that accept either unary
or binary representation of the length of its accepted words.
The unary automaton can be used to identify the coefficients
of the semilinear set, while the binary automaton can be
used to compose with other arithmetic automata on integer
variables.

The performance of our analysis relies on efficient au-

tomata manipulation. We implement all functions using
a symbolic automata representation (MBDD representation
from the MONA automata package) and leverage efficient
manipulations on MBDDs, e.g., determinization and mini-
mization. We believe that the symbolic representation (com-
pared to explicit representation) of automata can be better
scaled to model large systems and facilitates our tool to an-
alyze real-world programs.

2. LENGTHAUTOMATACONSTRUCTION
We are interested in identifying what length can be among

the accepted words of a string automaton. Given a string
automaton M , we aim to construct a DFA Mb (over a binary
alphabet) such that Mb accepts the binary encodings (from
the least significant bit) of the lengths of the words accepted
by M . The following property is well known.

Property 1: For any DFA M , {n|n = |w|, w ∈ L(M)}
forms a semilinear set.

However, identifying the length set of arbitrary regular
language is not trivial, e.g., the length set of ((baaab)+ab)+

is {7, 12, 14, 17, 19, 21, 22, 24, 25, 26, 27, 28} ∪ {29 + k|k ≥
0}. We tackle this problem by constructing the automa-
ton Mu that accepts the unary encodings of the lengths
of the accepted words of a string automaton M . Given
M = 〈Q, q0, B

k, δ, F 〉, where each symbol is encoded as a
k-bit string, Mu is constructed by determinizing the NFA
〈Q, q0, B

1, δ′, F 〉, where δ′(q, 1) = q′ if ∃α, δ(q,α) = q′.
Mu uniquely identifies a semilinear formula

W

i x = ci ∨
W

j ∃k.x = C + rj + Rk, where ci, rj , C, R are constants,
and ∀i, ci < C, and ∀j, rj < R. The length set is exactly the
set of values of x that satisfy the formula.

In the following, we propose an incremental algorithm to
construct a DFA that accepts the binary encodings (from
the least significant bit) of the values of x that satisfy a
given semilinear formula.

The construction is achieved by calling the procedure
construct_BLA. At line 3, we first compute the set of
reachable binary states Qb by calling the recursive procedure
ABS (Add Binary State). A binary state is the value of a
triple (t, v, b). t ∈ {0, 1, 2} is the type of the binary state,
which indicates the meaning of the value of v and b. While
t = 0, v is equal to the value of the binary word accepted
from the initial state to the current state, and b is equal
to the binary value of the previous bit in the word. While
t)= 0, v is equal to the remainder of which the dividend is
the value of the binary word accepted from the initial state
to the current state and the divisor is R; b is the remainder
of which the dividend is the binary value of the previous bit

5

in the accepted word and the divisor is R. t = 1 indicates
the value of the binary word accepted from the initial state
to the current state is greater or equal to C; t = 2 indicates
the value is less than C. Each binary state is further associ-
ated with an index, a true branch and a false branch, which
are used to construct the state graph later. Briefly, ABS is
a recursive procedure which incrementally adds the encoun-
tered binary state if it has never been explored. Initially, the
binary state is (0, 0,⊥). We assume 2 ⊥= 1. Since binary
states are finite, ABS is guaranteed to terminate. Upon
termination, all reached binary states are added to Qb. For
each binary state in Qb, as line 4 to 9, we iteratively gen-
erate a state q, and set its transition and final status. We
construct the final automaton at line 10.

Algorithm 1 ABS(Q, C, R, t, v, b)

1: if ∃q = (t, v, b) ∈ Q then
2: return q.index;
3: else
4: Create q = (t, v, b);
5: q.index = #Q; q.true = q.false = −1;
6: Add q to Q;
7: if t == 0 ∧ (v + 2 × b ≥C) then
8: q.true =ABS(Q, C, R, 1, (v+2×b)%R, (2×b)%R);
9: q.false =ABS(Q, C, R, 2, v%R, (2 × b)%R);

10: else if t == 0 ∧ (v + 2 × b < C) then
11: q.true =ABS(Q, C, R, 0, v + 2 × b, 2 × b);
12: q.false =ABS(Q, C, R, 0, v, 2 × b);
13: else if t == 1 then
14: q.true =ABS(Q, C, R, 1, (v+2×b)%R, (2×b)%R);
15: q.false =ABS(Q, C, R, 1, v%R, (2 × b)%R);
16: else if t == 2 then
17: q.true =ABS(Q, C, R, 1, (v+2×b)%R, (2×b)%R);
18: q.false =ABS(Q, C, R, 2, v%R, (2 × b)%R);
19: end if
20: return q.index;
21: end if

Algorithm 2 construct_BLA(C, R, C =
{c1, c2, . . . cn}, R = {r1, r2, . . . rm})

1: Qb = ∅;
2: Q = ∅;
3: init =ABS(Qb, C, R, 0, 0,⊥);
4: for each qb ∈ Qb do
5: Add q = qq.index to Q;
6: δ(q, 1) = (qb.true)= −1?qqb.true : qsink);

7: δ(q, 0) = (qb.false)= −1?qqb.false : qsink);

8: F (q) = ((qb.t == 0 ∧ ∃c ∈ C.qb.v == c) ∨(qb.t ==
1 ∧ ∃r ∈ R.qb.v == (r+C)%R) :′ +′?′−′);

9: end for
10: Construct M = 〈Q ∪ {qsink}, qinit, B

1, δ, F 〉;

Implementation.
We have implemented the above algorithms using MONA

DFA packages. We give an example in Figure 1. The length
automaton accepts the binary representatin of the semilin-
ear set {7 + 5k|k ≥ 0}. Consider the number 1087, whose
binary encoding is 10000111111. One can check that the bit
string from the least significant is accepted by the automa-
ton shown in Figure 1.

Figure 1: The Length Automata of (baaab)+ab. The
Semilinear Set is {7 + 5k|k ≥ 0}

3. CONCLUSION
We have presented the algorithms to construct DFAs that

accept unary or binary encodings of the length of a regular
language.The DFAs that accept the binary encodings can
be further composed to one multi-track arithmetic automa-
ton [2] with other integer variables. This arithmetic au-
tomaton may catch the relation among the lengths of string
variables and the values of integer variables. One can check
the length properties of string variables or enforce the con-
straints on the lengths of string variables using the length
set derived from the multi-track arithmetic automaton.

To complete our work, we will focus on: (1) the for-
ward image computation of string and arithmetic automata
against common string and arithmetic operations, (2) the
widening operator to accelerate the fixed point computa-
tion, and (3) the general symbolic verification framework on
systems having strings and integers. We plan to apply these
techniques to check buffer overflows.

4. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

C. Kruegel, E. Kirda, and G. Vigna. Saner: Composing
Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In Proceedings of the Symposium
on Security and Privacy, 2008.

[2] Constantinos Bartzis and Tevfik Bultan. Efficient
symbolic representations for arithmetic constraints in
verification. Int. J. Found. Comput. Sci.,
14(4):605–624, 2003.

[3] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In
Proc. 10th International Static Analysis Symposium,
SAS ’03, volume 2694 of LNCS, pages 1–18.
Springer-Verlag, June 2003.

[4] Christian Kirkegaard, Anders Møller, and Michael I.
Schwartzbach. Static analysis of xml transformations in
java. IEEE Transactions on Software Engineering,
30(3), March 2004.

[5] Pierre Wolper and Bernard Boigelot. On the
construction of automata from linear arithmetic
constraints. In TACAS, pages 1–19, 2000.

[6] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H.
Ibarra. Symbolic string verification: An
automata-based approach. In 15th International SPIN
Workshop on Model Checking of Software, 2008.

6

Fast Annotation and Modeling with a Single-Point Laser
Range Finder

Jason Wither
jwither@cs.ucsb.edu

Chris Coffin
ccoffin@cs.ucsb.edu

Jonathan Ventura
jventura@cs.ucsb.edu

Tobias Höllerer
holl@cs.ucsb.edu

ABSTRACT
This paper presents methodology for integrating a small, single-
point laser range finder into a wearable augmented reality system.
We introduce a method using the laser range finder to incremen-
tally build 3D panoramas from a fixed observer’s location. To build
a 3D panorama semi-automatically, we track the system’s orienta-
tion and use the sparse range data acquired as the user looks around
in conjunction with real-time image processing to construct geom-
etry around the user’s position. Using full 3D panoramic geome-
try, it is possible for new virtual objects to be placed in the scene
with proper lighting and occlusion by real world objects, which in-
creases the expressivity of the AR experience.

1. INTRODUCTION
Mobile Augmented Reality (AR) allows users with wearable or

portable computers to see and interact with virtual content that is
located in and registered to the real world around them. In order
to use the full interaction potential of this technology, AR research
and application development increasingly focus on going beyond
pre-created content. Implementing such expressive systems is dif-
ficult with traditional outdoor AR equipment however. For proper
occlusion by real-world objects it is necessary to have a model of
the real-world environment. In many outdoor systems a model is
built as part of a preparatory offline process; however this is very
time consuming and doesn’t scale well.
Ideally, we would like a system that can provide correct occlu-

sion of virtual annotations by the real world with very little effort.
We would like this system to fit the framework of Anywhere Aug-
mentation, requiring only negligible start up cost, no environment
instrumentation, and only off-the-shelf hardware components.
In the spirit of this Anywhere Augmentation agenda, we decided

to add a small, affordable, single-point laser range finder to our
wearable system. With this new interactive sensing modality in
place it is now possible to create 3D panoramas easily from a static
location.

2. RELATEDWORK
Several different approaches have been proposed for the problem

of creating a panoramic environment map with depth information.
The depth can be specified by the user in an interactive modeling
system [6], however, the depth model produced by this type of sys-
tem is only defined qualitatively. With multiple cameras [7], or a
moving camera [5], panoramas with parallax can be automatically
produced. More similar to our scenario is that of Bahmutov et al.
[2]. They couple a 7x7 laser range finder array with a moving cam-
era to produce highly detailed, textured indoor scene model.
Note the stark difference in focus between our static viewpoint

technique andmulti-view geometry approaches that recover or track
sparse depth in moving user views [3], or recover depth information
from landmark features in overlapping photographs [1].

3. HARDWARE AND CALIBRATION
The laser range finder we have chosen to use is an Opti-Logic

RS400 which gives calibrated range readings continuously at 10
Hz and has a factory-specified range of 400 yards with accuracy of
± 1 yard. It weighs less than 8 ounces. We are also using a Pt. Grey
Firefly MV camera, and a Garmin GPS 18 receiver. For orientation
tracking we are using DiVerdi et al.’s [4] Envisor system. Envi-
sor does completely vision based orientation tracking, using both
sparse optical flow for frame to frame features and heavyweight
landmark features. It builds an environment map on the fly, which
we use for image processing.
We have calibrated the laser range finder to point parallel to the

user’s viewing direction. For an outdoor scene this means that the
laser will always hit objects near the center of the users field of
view. By measuring the baseline between the laser and camera we
can further determine exactly what pixel in the image the laser is
hitting depending on the distance returned by the range finder.

4. DEPTH MAP CONSTRUCTION
In this section we will describe using the laser range finder for

the challenging task of building a full panoramic depth map around
the user. As the user looks around the environment, our tech-
nique continually integrates color, depth, and temporal data to re-
fine the estimated 3D model. In our experiments creating a number
panoramic depth maps we found that the process of looking around
to completely fill the full 360 degree depth map takes between two
and four minutes, providing between one and three thousand depth
samples from the laser range finder. This time could likely be re-
duced with a more robust tracking system.
To being creating a 3D panorama the user simply looks around.

As the user pans the laser range finder, different objects are ranged.
Because we only receive sparse depth samples compared to the res-
olution of the camera, we need to propagate point labels across
the image. As a first step, we group the range points. Any time
there is a large difference between one depth value and the next
we conclude we have observed a group boundary. This technique
for dividing the range points into groups is robust because of the
high update rate of the range finder. Two consecutive updates will
always have a small angle in between them, so our algorithm is
unlikely to change groups when moving the range finder along a
single surface.
One significant advantage to dividing the range points into groups

is the semantic information gained about the spatial layout of the
scene. We use this information to seed a diffusion based flood fill

7

Figure 1: An example color panorama and automatically generated depth map pair. Darker regions of the depth map are closer to
the user. To generate both images the user simply has to look around the scene. Both images are composed of the four surrounding
faces of a cube map, and are not warped to a cylindrical projection. This cube projection causes the strange peak on the roof line in
the center of the images.

process that expands the groups across the image. For this process
a confidence value is associated with each pixel, which is highest at
known sample points, and initially zero everywhere else. At each
iteration, each pixel looks at its 8-connected neighborhood and av-
erages its group (foreground or background) and confidence with
neighboring pixels of higher confidence. This diffusion process is
weighted by edge information as well.
We automatically detect object boundaries by examining the in-

tensity gradient (using the 3x3 Sobel operator). The measure of
boundary Ep = f (dIdp) at pixel p is a function of the magnitude
of the gradient. We use f (x) = x4 so that the function will drop
off quickly as the gradient decreases. To use the edge informa-
tion to regulate diffusion the edge value at a neighboring pixel is
subtracted from the neighbor’s confidence value before being con-
sidered by the diffusion algorithm. The result is that pixels on an
edge have a very low chance of diffusing their value, effectively
stopping the diffusion along boundaries. One particular advantage
of this method is its speed; on the GPU, 120 iterations per second
can be achieved.
In areas of relatively dense laser range finder samples, the tech-

nique gives excellent segmentation along natural image boundaries.
In areas with less dense sample resolution, the technique works
less well, sometimes stopping short of filling the correct semantic
region, or leaking through boundaries into incorrect semantic re-
gions. However, the user can easily improve the results by adding
more samples as appropriate.
From the group expansion we produce a group map which labels

each pixel with its group number. Now, the depth of each pixel
must be determined. To do this we try to model the scene with
vertical planar surfaces. This is a reasonable thing to do for urban
environments where most objects around a user are buildings. If we
find that all of the points in a group are co-planar it is reasonable
to assume that they are all on the same planar surface, and use
that surface for smooth extrapolation across the whole group. By
assuming that all planes are vertical we greatly reduce our search
space, allowing us to create accurately oriented planes with a small
number of points.
We use a perpendicular regression to find the best fit line through

the set of 2D points where all heights are ignored. This regres-

sion minimizes the sum of squares of the perpendicular distances
of each point from the line. We also use RANSAC to throw out
any outliers in the set. Outliers are often created by small fore-
ground objects like light poles that partially occlude the the surface
of interest and can be ignored.
For a group with no detected planar objects, we take the average

depth of the samples in the group as the depth of the entire group.
Finally, we use the average height of a user to determine the ground
plane, and add that plane to the our complete depth map.

5. CONCLUSIONS AND FUTUREWORK
We have presented methodology for use of a single-point laser

range finder in an outdoor AR setting. We have presented results
that demonstrate how a laser range finder can improve the AR ex-
perience by building a depth map around a static user. The depth
maps we create are accurate enough to be useful for a number of
AR applications, arguably the most useful of which is automatic
occlusion of virtual objects by real world objects.

6. REFERENCES
[1] T. Aoki, T. Tanikawa, and M. Hirose. Virtual 3d world

construction by inter-connecting photograph-based 3d models.
IEEE VR, pages 243–244, 2008.

[2] G. Bahmutov, V. Popescu, and E. Sacks. Depth enhanced
panoramas. IEEE Visualization, 2004.

[3] A. Davison. Real-time simultaneous localisation and mapping
with a single camera. In IEEE ICCV, 2003.

[4] S. DiVerdi, J. Wither, and T. Höllerer. Envisor: Online
environment map construction for mixed reality. In IEEE VR,
2008.

[5] S. Peleg and M. Ben-Ezra. Stereo panorama with a single
camera. IEEE CVPR, 1999.

[6] H.-Y. Shum, M. Han, and R. Szeliski. Interactive construction
of 3d models from panoramic mosaics. IEEE CVPR, pages
427–433, 1998.

[7] H.-Y. Shum and L.-W. He. Rendering with concentric
mosaics. In ACM SIGGRAPH, pages 299–306, 1999.

8

Mergeable-Cache: Exploiting Data-Similar Executions in
Multicore Processors

Susmit Biswas, Frederic T. Chong, Diana Franklin, Timothy Sherwood
{susmit,chong,franklin,sherwood}@cs.ucsb.edu

ABSTRACT
While microprocessor designers turn to multicore architec-
tures to sustain performance expectations, the dramatic in-
crease in parallelism of such architectures will put substan-
tial demands on off-chip bandwidth and make the memory
wall more significant than ever. We propose that one poten-
tial application that will be profitable for multicore proces-
sors is in the support of many similar executions of the same
program. We propose cache structures that detect data sim-
ilarities and merge cache blocks, resulting in substantial sav-
ings in cache capacity and reductions in cache misses that
go off chip. Specifically, we propose a Mergeable cache that
merges duplicate cache lines owned by different processors.
Merging duplicate data owned by different processes poses
several challenging problems which lead to degradation in
performance for a pure Mergeable-cache in program phases
with low data similarity across executions. We address these
issues in this paper, and propose a Half-Mergeable cache ar-
chitecture which combines the benefits of both traditional
cache and Mergeable-cache. Using trace-based simulation,
we demonstrate that our proposed technique provides a scal-
able solution and leads to an order of magnitude reduction
in main memory accesses. For 16 cores running 16 similar
executions of the same application and sharing an exclusive
4-MB, 8-way L2 cache, the Half-Mergeable cache shows a
L2-miss rate reduction of up to 19.56× and 1.44× on aver-
age, while posing an overhead on cache size of only 2.824%
and negligible power overhead.

1. INTRODUCTION
As the difficulties of uniprocessor performance scaling have
proven economically daunting, designers have turned to band-
width (parallelism), rather than latency, to scale perfor-
mance in future microprocessors. This approach has led
to two significant challenges. First, as a single reference
stream scales to tens, hundreds, or even thousands of refer-
ence streams, the memory system will struggle to service all
of the requests in a timely manner. Second, careful program-
ming will be required to parallelize applications to hundreds
of cores. Programming both correct and efficient parallel
code is challenging, and too few programmers have the ex-
pertise to accomplish both.

We explore an interesting class of applications that fall into
a model which we term “multi-execution.” Multi-execution
refers to the execution of multiple copies of the same pro-
gram, but with different input data or parameters. We be-
lieve that multi-execution could become a useful model of
execution as multicores scale, because it is already used in
many domains, and because no software changes are nec-
essary to take advantage of a multicore system. Note that
an alternative to multi-execution is to write an explicitly
parallel program that takes many instances of an applica-
tion and explicitly shares redundant data. This approach,

however, is labor intensive, difficult to get correct, often re-
quires source access to libraries and copyrighted/proprietary
codes, and can miss substantial data similarity that can only
be discovered with an efficient dynamic mechanism.

We explore the characteristics of several example applica-
tions from simulation, optimization, database, and learn-
ing domains. We find that the similarity of multi-execution
working sets can be quite high, but careful design is needed
to profitably exploit this similarity in a memory system.
We present a Mergeable cache architecture which dynami-
cally merges cache lines containing identical data from dif-
ferent instances of the same program running under multi-
execution. We find that a Mergeable cache poses several
challenging problems which lead to degradation in perfor-
mance for execution phases with low data similarity. We
address these problems, and propose a Half-Mergeable cache
and protocol which combines the benefits of a Mergeable and
a conventional cache.

We have implemented a trace-based simulation framework
to demonstrate the strength of our approach. In this paper,
we present results with 10 applications including 6 bench-
marks from from SPEC2000 benchmark suite[1], and LIB-
SVM, icsiboost, PyODE and NGSpice. In this paper, we
interchangably use processes and processors as, in our simu-
lation based study, we assume that a single process executes
in one processor.

2. MERGEABLECACHEARCHITECTURE
Although the data similarity across instances of our multi-
execution applications is high, designing a cache architecture
that can take advantage of this similarity without incurring
excessive overhead or degrading conventional performance
proves to be challenging. Specifically, our goal is to design an
efficient hardware technique that dynamically finds identical
data among different processes, merges such data, and splits
them again when the processors write to the data. There are
three significant technical issues which need to be addressed
in merging identical data blocks from multiple processors.

1. Finding identical data is expensive if every access to
the memory results in comparison with all valid cache
lines. Searches must be minimized while the opportu-
nity for identifying mergeable data is maximized.

2. Merged data needs to be organized in such a way that
data is quickly found in a standard cache access.

3. Since all processors are running the same program,
typical memory mapping would cause many (unmerged)
accesses to align and cause many cache conflicts.

To solve the first problem, we observe that applications are
most likely to have identical data located at the same vir-

9

Data
and

Flags T a
 g

A r
 r a

 y

P r
 o c

 e s
 s o

 r
F l a

 g s

Bit Vector of Accessing
Processor

Priority
Encoder

Address

Data
Lines

CAM

Data Buffer

Interface

Data
and

Flags T a
 g

A r
 r a

 y

Priority
Encoder

Non-mergeable

Mergeable

Processor ID

Hash

Figure 1: Half-Mergeable cache architecture.
The cache is partitioned in Mergeable and non-
Mergeable (traditional) cache segments. When a
line is evicted from L1 and moved to L2, all lines of
the cache set which the evicted line gets mapped to,
are copied and compared in CAM.

tual address (but different process ID). Thus, we limit our
searches to only data having the same virtual address. To
perform this search efficiently, we must arrange to map all
the relevant virtual addresses the same cache set.

Unfortunately, L2 caches, where line merging occurs, are
typically physically-addressed. Searching all possible sets
that could contain the same virtual address would be pro-
hibitively expensive. In order to limit the searches, we use a
page coloring technique[2] to assign virtual pages to physical
pages such that the same virtual address across all processes
map to the same set in the cache.

Because cache lines for the same virtual address map to
same cache set, the search space for identical cache lines
is bounded by associativity. Restricting the virtual page
placementreduces the number of possible locations to search
for identical cache line, but it has the potential to severely
impact performance. Because all of the processes sharing
the cache are virtually identical, they tend to use the same
addresses at the same time, and if the data in that set are
not identical, then the cache will exhibit very poor behavior
due to conflict misses.

This is solved by skewing the address by the processor num-
ber so that same virtual address from all processors are not
mapped to same cache set, and thereby, conflicts can be
reduced[3]. This skewed addressing technique, however, is
entirely at odds with our desire to keep merging candidates
in the same cache set as the goal of reducing conflict misses
and grouping merging candidates are conflicting.

We resolve this conflict by using a Half-Mergeable cache
with static partitions of Mergeable and non-Mergeable seg-
ments. Data lines which can be merged reside in Mergeable
segment, and lines with dissimilar content are moved to a
non-Mergeable cache. When a cache line is evicted from an
upper-level cache, it is written to the Mergeable segment at
first. If a cache line is not able to merge with any pre-existing
cache line having the same address and data, it replaces
an old line, which is moved to the non-Mergeable segment.
A Half-Mergeable cache provides the advantage of utilizing

ammp equake icsiboost libsvm mcf ngspice pyODE twolf vortex vpr A-Mean G-Mean0

2

4

6

L2

 M
is

s
/ 1

K
m

em
or

y
re

fs

private cache
shared (skew) cache
full mergeable cache
half mergeable cache

65 65 30 30 61 61 60 59 38 29 14
6

14
1

92 13
7

31 33 35 33 19 23

Figure 2: L2 cache miss count per 1000 memory
references for 10 benchmarks.

the full cache when data similarity is low without increas-
ing the cache miss rate significantly, yet storage efficiency is
increased by merging identical lines in the Mergeable cache.

3. RESULTS AND CONCLUSION
We use the total number of L2 miss × 1000 / total num-
ber of L1 accesses as our metric in all results. Due to
space constraints, we show only simulation results of 16
processors sharing a 4-MB, 8-way exclusive set-associative
L2 cache with 32-KB private L1 cache in each processor
in Figure 2. The L1 and L2 caches are exclusive. Be-
cause of increased conflicts in non-shared regions, the Full-
Mergeable cache performs worse on PyODE and 255.vortex,
but the Half-Mergeable cache reduces the miss rate by 1.44×
on average. In case of 255.vortex and PyODE, the Full-
Mergeable cache increases miss rate by 1.23× and 8.02×
respectively, but Half-Mergeable cache shows only 0.34% in-
crease in miss rate for 255.vortex, and reduction in miss rate
by 55.12% or 2.27× in PyODE. The geometric mean shows
that, when applications are weighted more evenly, the Half-
Mergeable cache outperforms the Full-Mergeable cache. The
Full-Mergeable and Half-Mergeable cache provide a reduc-
tion in miss rate by a factor of 2.29x and 3.68x, respectively,
over a shared cache using skewed addressing.

Our initial architecture which employs a static partition of
cache into Mergeable and non-Mergeable segment shows the
potential of merging similar data. Our next step is to de-
sign a dynamic cache-partitioning technique which will be
able to manage mergeable data more efficiently, adjusting
for different amounts of sharing. Furthermore, the multi-
exection paradigm could be expanded to include simultane-
ously executing programs that are similar, but not identi-
cal. Different programs using many of the same libraries, for
example, may be good candidates for multi-execution sup-
port. Since we have taken great care to support both low-
similarity and high-similarity cases in our memory system
design, it is our hope that a low-overhead multi-execution
system can be used to support a wider scope of applications
than explored in this initial study.

4. REFERENCES
[1] SPEC CPU2000: http://www.spec.org/cpu/.
[2] S. Bederman. Cache Management System Using Virtual and

Real Tags in The Cache Directory. IBM Technical
Disclosure, 21(11), April 1979.

[3] N. Topham and A. Gonzalez. Randomized Cache Placement
for Eliminating Conflicts. IEEE Transactions on Computers,
48(2):185–192, February 1999.

10

Whiteboard Computing:
Towards A Sketch-Centric Operating Environment

Ryan Dixon and Timothy Sherwood
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106-9560
{rsd,sherwood}@cs.ucsb.edu

ABSTRACT
The simplicity and accessibility of whiteboards provides an
appealing avenue for sharing ideas and solving problems.
Yet even as these surfaces sit at the center of computer-
intensive work environments, whiteboards are largely rel-
egated to serving as note-taking devices. We present our
concept of whiteboard-based computing, highlight current
hardware and software trends that have laid the ground-
work for whiteboard-based systems, and describe our efforts
in creating a whiteboard computing framework.

1. MOTIVATION
Whiteboards offer a simple and powerful means of describ-
ing and communicating complex ideas. Yet, while their util-
ity as an integral problem solving tool is recognized across
many disciplines, the whiteboard largely remains a static de-
vice with only limited integration into our current computer-
based workflows. Our goal is to create the next generation
whiteboard system whereby free-form input is used to not
only draw and share static images, but also perform dy-
namic computations. It is our belief that current hardware
and software trends support our vision.

With recent advances in multi-touch technology, a new mar-
ket for devices larger than traditional computer displays ap-
pears to be emerging [3, 6]. As electronic displays continue
to double in size approximately every year and a half, we are
nearing a convergence in the landscape of desktop comput-
ing and wall-sized human-computer interaction [2]. While
existing windows, mouse, and pointer interfaces are being
adapted to better suit these changing demands, there is sig-
nificant potential for new methods of interaction. Given the
current trends, it is evident that both hardware and software
will play a critical role in the evolution of this technology.

Over the past decade, numerous handcrafted, domain-specific
software systems have been designed to handle free-form in-
put [1, 4]. The first generation of prototypes is just now
reaching a product-ready level of maturity; however, there is
little to no coherence between any of the individual projects.

Ultimately, we desire to harness and combine these trends
into a system that can compute upon free-form input from
any number of domains without sacrificing the freedom pro-
vided by a conventional whiteboard. We believe this presents
a number of new challenges to architect, system, and lan-
guage designers alike, and we have started to take the nec-
essary steps towards making this a reality.

2. WHITEBOARD TRAFFIC
To better understand the data requirements of whiteboard
systems, using an eBeam capture device [5], we have col-
lected roughly four months worth of input on our laboratory
whiteboard. Our experiment does no recognition, instead it
passively records statistics from the data points that are nat-
urally written by our lab for computer architecture research
so that we can understand the distribution of inputs that
might be given to recognition systems. Beyond spatial coor-
dinates, the raw data captured includes timing information,
marker color, and marker size.

Over the survey period, approximately 10-15 lab members
had access to the whiteboard. The sample period, spanning
from November 19, 2007 to March 17, 2008, includes por-
tions of Winter and Spring quarter, including a significant
holiday break in between. Of the 120 days of the survey,
49 days (approximately 41%) contained board activity. The
combined days of board activity produced over 300,000 in-
put points and 11,420 input strokes. An input stroke is
generated every time an input pen touches the whiteboard
surface. A stroke accumulates all point data captured until
the pen is lifted from the surface of the whiteboard. Our
entire data collection consists of strokes composed of up to
hundreds of points each. All of the observed traffic was con-
sistently bursty, often occurring within the span of an hour,
followed by hours of inactivity.

Throughout the duration of the survey, we also designed
tools to help parse, interpret, and understand the white-
board data. From this work, we have created the begin-
ning of a whiteboard computing environment, where multi-
ple concurrent applications are allowed to run and interact
with free-form sketches and perform live computations.

3. WHITEBOARD FRAMEWORK
Our current work is focused on developing a whiteboard
environment where users can freely sketch and view com-
putations on-the-fly. At a high level, the board operating
environment is a lightweight event-based system that is re-
sponsible for managing board real-estate, and access to an-
notated stroke data. Figure 1 illustrates the current board
architecture and four of the distinct phases outlined below.
In its initial state, a board hosts a set of board objects that
will be responsible for parsing and interpreting all incoming
stroke data. These objects largely define the functionality
and behavior of the board.

11

































Figure 1: The board object event loop: (1) Stroke
input, (2) Event processing, (3) Querying board
state, and (4) Board object instantiation.

As a user draws, the board is responsible for collecting and
storing representative stroke data. An initial pass is made
over the data to annotate specific features that will likely
be relevant to a number of board applications. These an-
notations might include features such as: fragmentation,
where complex strokes are separated into simpler compo-
nent pieces; beautification, where overlapping strokes are
refined into a single representative stroke; and even charac-
ter recognition. The initial board annotation phase enables
the board to support gestures. Currently, only the scribble
gesture is supported to enable full-stroke erasure.

After the initial annotation phase is complete, each of the
board objects is presented an event, indicating that a new
stroke has been added to the board. It is then up to each
individual board object to determine what significance that
new stroke has with respect to its own state of computation.
A board object can also query the board for an up-to-date
view of board strokes. Lastly, a board object has the po-
tential to create and add new board objects to the board.
In the case of Tic-Tac-Toe, a board object constantly mon-
itors the board for the appearance of a Tic-Tac-Toe game.
Once the necessary hash marks have been drawn, the board
object instantiates a new Tic-Tac-Toe game.

Our design approach can, in many ways, be viewed as a
generalization of the spreadsheet; portions of the board may
interact and affect other regions of computation. As soon
as a stroke is drawn, changes are immediately presented to
the user. Figure 2 provides a sample of the applications we

Figure 2: An example of three concurrent white-
board applications: an equation solver, Tic-Tac-Toe,
and a finite state machine.

have built thus far. These three applications exemplify the
intended interaction with the whiteboard. For example, as
input is written for the the finite state machine (the bottom
text in Figure 2), the active states are automatically updated
and highlighted. Likewise, when edges and nodes are added
or removed from the state machine, changes are reflected
immediately in the new graph.

Our work is still very much in the preliminary stages. Al-
though we have not yet performed any definitive tests on
the system, our initial feedback has been positive and we
believe are initial efforts are a step in the right direction.

4. CONCLUSIONS
This work presents challenges across many domains. User
interface decisions affect the stroke recognition process which,
in turn, affects recognition accuracy and system performance.
Many questions pertaining to system design remain open.
It is our hope to not only provide a viable solution to the
whiteboard computing problem, but also provide a starting
point for future development in this area. We hope to inspire
a combined effort between architecture, system, user inter-
face, and language design experts to help further develop
this idea.

5. REFERENCES
[1] C. Alvarado and R. Davis. Dynamically Constructed

Bayes Nets for Multi-Domain Sketch Understanding. In
IJCAI ’05, August 1 2005.

[2] R. Dixon and T. Sherwood. Whiteboards that
Compute: A Workload Analysis. In IISWC ’08, 2008.

[3] J. Y. Han. Low-Cost Multi-Touch Sensing Through
Frustrated Total Internal Reflection. In UIST ’05.
ACM, 2005.

[4] J. J. Laviola and R. C. Zeleznik. MathPad2: A System
for the Creation and Exploration of Mathematical
Sketches. ACM Trans. Graph., August 2004.

[5] Lucidia. eBeam - Interactive Whiteboard Technology,
2008.

[6] Microsoft. Microsoft Surface - Surface Computing,
2008.

12

MyDepressedSpace: Classification and Search on
MySpace Pages

Kathy Macropol, Camilla Fiorese and Madhu Venugopal
Dept. of Computer Science

University of California, Santa Barbara
{macropol, camilla, madhu.venugopal}@cs.ucsb.edu

ABSTRACT
Social networking websites, such as MySpace [6], have a
wealth of data available on their users. This data represents
both knowledge discovery opportunities for researchers, as
well as important privacy issues for users. However, despite
the many possibilities for the data mining of these pages,
most research done has focused on only a few specific areas.
Our aim in this paper is to look at a previously unconsid-
ered area, namely medical or psychological data mining. We
consider the classification of MySpace pages, using a naive
Bayes classifier, based on the likelihood of the user to be
depressed. We find that depression (bipolar and unipolar)
can be predicted from the information on users’ pages. By
combining the results with a web search engine, we create
a tool that allows a user to do a keyword search and ob-
tain a list of related profiles containing individuals at high
risk of being depressed. The analysis of information from
depressed users reveals several major trends — some new,
others confirmed in previous studies of depression. The re-
sults of our study indicate that the data mining of social
networking websites can be useful for medical data mining,
as well as an important privacy issue for their users.

1. INTRODUCTION
In recent years there has been considerable interest in social
networking websites. With the largest of these sites consist-
ing of millions of members, many research studies have been
done focusing on the structure, privacy issues, and social
implications of such networks [3]. In addition, each page
may have a wealth of information on its user: from categor-
ical information such as age and education, to blog pages
containing details on a user’s life. Studies have been done
focusing on the mining of such information with the pur-
pose of targeted advertising [10]. However, to the best of
our knowledge, no study has been done that considers the
feasibility of collecting and data mining these profiles with
the purpose of medical or psychological analysis.

To discover if the data mining of these pages was feasible

for such classification, we chose to focus on the problem of
classifying users from the social networking website, MyS-
pace, for visible signs of depression. (No distinction between
bipolar and unipolar depression was made.) Our study fo-
cused on depression for two main reasons. First, as a serious
medical condition that affects the lives of millions of indi-
viduals in the US, finding people suffering from depression
is both a major health and potential privacy concern. Sec-
ondly, many signs of depression may be discoverable from
the information contained within a user’s blog (i.e. suicidal
thoughts or attempts may be recorded in their entries).

2. IMPLEMENTATION
To accomplish this, we first collected pages from 17,000
MySpace users (the profile and up to 50 blog pages per
user) as a total dataset. To create a training set, 193 MyS-
pace users (94 positive, 99 negative) were manually selected.
Each user in the training set was classified as positive (de-
pressed) or negative (not depressed). A positive record was
determined by three criteria. 1.If the user stated in their
blog that they had been diagnosed with depression. 2.If the
user either had committed suicide, or stated within their
pages that they had tried to commit suicide. 3.If the user
confirmed in their blog that they self-harmed, cutting them-
selves. Negative profiles were those that did not meet these
three criteria.

The dataset consisted of 791 attributes per user. Each at-
tribute was a score (proportional to the TFIDF) calculated
from the frequency of a certain phrase appearing in that
user’s blog. The 791 phrases were chosen by first finding the
most frequent phrases in the blogs of the positive training
set, and manually picking those that seemed most relevant
(i.e. “I want to die”, or “my life sucks”). The blogs were
parsed and the scores calculated using a perl script writ-
ten using the HTML::TreeBuilder and HTML::TokeParser
modules available from CPAN [7].

A naive Bayes classifier was then created and trained using
Weka’s Java interface [9]. The classifier created had 81.3%
accuracy and 97.9% precision when using 4-fold cross vali-
dation on the training set. After training, the classifier was
run on the original 17,000 user pages to obtain scores (prob-
abilities) for each user based on the likelihood of depression.

To allow easy access to the data and results, as well as cre-
ate a potentially useful tool, the results were combined with
a web search engine. Our web-based system utilized two
open-source products from the Apache Software Founda-

13

(a) User Smokes (b) Orientation (c) Status (d) Age

Figure 1: Number of Depressed / Not Depressed Users per Selected Category

tion: Lucene [5] and Tomcat [8]. The MySpace pages were
indexed in Lucene according to their HTML content and de-
pression scores. This created a searchable index of MySpace
users that could then be integrated with Tomcat and a Java
Servlet. In the end, our system allowed users to perform key-
word searches and obtain a list of related profiles containing
individuals likely to be depressed. From this, we were able
to analyze our results, as well as create a tool which may be
useful for psychologists and social studies researchers.

3. RESULTS
Classification of the 17,000 MySpace users returned 417 with
high (≥0.9) scores for depression. To ensure high scores
indicated higher chances of depression, the top 100 scoring
users were manually categorized. Thirteen users were found
to be false positives: two depression support groups, and the
rest having blog posts with depressed poems or song lyrics.
This meant 87% of the highest scoring users showed strong
signs of depression, helping to confirm that high depression
scores indicate higher probabilities of depression.

To analyze the returned results, the top 416 scoring profiles
were collected and assumed to contain individuals suffer-
ing from depression. The lowest 416 scoring profiles (con-
taining comparable blog lengths to the positive users) were
collected as the negative dataset. These pages were parsed
and statistics collected from the categorical information con-
tained within them. From these results, several major trends
were discovered. The top four categories containing the most
substantial statistical differences are listed in Figures 1a–1d.

Figures 1a and 1b show that smokers and gay/lesbian/bisexual
users are significantly more likely to be depressed, results
confirmed in previous studies [1, 4]. Females had a 12%
higher chance of depression than males, a finding also con-
firmed in [2]. In addition, as shown in Figure 1c, married
users are less likely to be depressed, a result also found in
[2]. However, an exception to this are individuals classified
as Swingers. Interestingly, in a new finding, Swingers were
the least likely to be depressed, being 15% less likely to be
depressed than married users. Finally, from Figure 1d, users
under 30 years of age had much higher chances of displaying
signs of depression (a 39% increase). Previous studies found
higher rates among this age range as well, though not with
as large a gap [2]. Two issues unique to age may affect its
results. One is that younger users may be more comfortable
providing details of their life in their blogs. Another are the

age limits given on websites such as MySpace, forcing some
users to lie about their ages. These problems, connected to
datasets taken from online websites, may make analysis and
control of age difficult in the data mining of such data.

However, overall, our goals of analyzing the power of social
network website data mining, as well as creating a tool for
searching MySpace users ordered by likelihood of depres-
sion, were both met. The fact that analysis of our results
produced major trends, both new and previously confirmed,
shows that data collected from these websites are a valid
source for medical data mining and the discovery of new
knowledge. It also raises the need for better understanding
of privacy issues online, as any random individual, company,
or government may be able to use data mining to discover
more about an individual than they may wish possible.

4. REFERENCES
[1] R. Brown, P. Lewinsohn, J.R. Seeley, and E.F.

Wagner. Cigarette Smoking, Major Depression, and
Other Psychiatric Disorders Among Adolescents.
35(12):1602–1610.

[2] R. Frerichs, C. Aneshensel, and V. Clark. Prevalence
of Depression in Los Angeles County. 113(6):691–699.

[3] J.M. Kleinberg. Challenges in mining social network
data: processes, privacy, and paradoxes. In Proc of the
13th ACM SIGKDD Intl Conf on Knowledge
Discovery and Data Mining, San Jose, California,
USA, August 2007.

[4] J. Lock and H. Steiner. Gay, Lesbian, and Bisexual
Youth Risks for Emotional, Physical, and Social
Problems: Results From a Community-Based Survey.
38(3):297–304.

[5] Lucene. http://lucene.apache.org.
[6] MySpace. http://www.myspace.com.
[7] Comprehensive Perl Archive Network.

http://www.cpan.org.
[8] Tomcat. http://tomcat.apache.org.
[9] I. Witten and E. Frank. Data Mining: Practical

machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2005.

[10] W. Yang, J. Dia, H. Cheng, and H. Line. Mining
Social Networks for Targeted Advertising. In Proc for
the 39th Hawaii Intl Conf on System Sciences, Hawaii,
USA, January 2006.

14

Are Your Votes Really Counted?
Testing the Security of Real-world Electronic Voting

Systems

Davide Balzarotti, Greg Banks, Marco Cova, Viktoria Felmetsger,
Richard Kemmerer, William Robertson, Fredrik Valeur, and Giovanni Vigna

Computer Security Group
{balzarot,nomed,marco,rusvika,kemm,wkr,fredrik,vigna}@cs.ucsb.edu

1. INTRODUCTION
Electronic voting systems play a critical role in today’s demo-

cratic societies, as they are responsible for recording and counting
the citizens’ votes. Unfortunately, in an alarming number of cases,
these systems have malfunctioned, suggesting that their quality is
not up to the task. Recently, there has been a focus on the security
testing of voting systems to determine if their defects could allow
an attacker to control the results of an election.

We participated in two large-scale security testing projects: the
California Top-To-Bottom Review (TTBR) of voting machines in
July 2007 [3] and the Ohio’s Evaluation & Validation of Election-
Related Equipment, Standards & Testing (EVEREST) in Decem-
ber 2007 [2]. In the former, we evaluated the Sequoia voting sys-
tem, while, in the latter, we evaluated the ES&S voting system.
Our task was to identify, implement, and execute attacks that could
compromise the confidentiality, integrity, and availability of the
voting process. During our testing, we identified major flaws in
both systems. As a result, the voting systems used in California
were decertified and those used in Ohio were recommended for
decertification.

In this paper, we briefly provide an overview of electronic voting
systems and describe our experience with the security testing of
two of such systems. We refer the interested reader to the full-
length version of this work for more details [1].

2. ELECTRONIC VOTING SYSTEMS
Electronic voting systems are large-scale, complex, distributed

systems, whose components range from general-purpose PCs to
optical scanners and touch-screen devices, each running some com-
bination of commercial off-the-shelf components, proprietary firm-
ware, or full-fledged operating systems. The components that most
frequently are part of an electronic voting system are:

• DRE – Direct Recording Electronic voting machine. A de-
vice to record the voter’s choices. This is usually a touch-
screen device where the voter casts his/her vote.

• VVPAT – Voter-Verified Paper Audit Trail. A paper-based
record of the choices selected by the voter. The VVPAT
printer is hooked to the DRE and the paper record is view-
able by the voter, but it is under a transparent cover so that
it cannot be modified other than through the normal voting
process.

• EMS – Election Management System. The system respon-
sible for the initialization of the components that collect the

votes and also for the final tallying of the votes. The EMS is
usually located at election central.

• Optical Scanner. An optical reader that counts votes cast on
paper ballots. There is usually one scanner at each polling
site and one at election central (e.g., for the counting of ab-
sentee ballots).

• DTD – Data Transport Device. Storage devices to transfer
data between different components of the systems. These
devices are used to transport ballot information to the DREs
and optical scanners at the polling site and to transport vot-
ing results to the EMS.

Figure 1 represents how these components interact during a typ-
ical election process. In the following, we describe the main steps
of this process.

Prior to the election, ballot information is prepared on the elec-
tion management system at election central. This information may
be directly entered into the DREs and the optical scanners, or it
may be written onto DTDs that are sent to the polling places. Paper
ballots for each of the polling places are also prepared at election
central.

On election day, prior to the start of the voting process, if needed,
optical scanners and DREs are initialized with the appropriate bal-
lot information at the polling site, using the DTDs. Then, DREs
are tested with sample votes to see if they record everything ac-
curately. The optical scanners are tested in a similar way. If the
DREs and the scanners pass the pre-election testing, then they are
ready to be used for voting.

When a voter comes to the polling place, he/she registers at a
desk. Then, the voter is given a token (e.g., a smart card) to insert
into the DRE to start voting. The voter’s choices are displayed on
the DRE screen and are also printed on the VVPAT.

If paper ballots are used, the voter is given a ballot and a mark-
ing device to cast his/her vote. When the voter is through, the
ballot is handed to an official who inserts it into the optical scan-
ner to be read and recorded. Some optical scanners will report an
undervote (voting for less than n choices when n are supposed to
be picked) or an overvote (voting for more than n choices when n
is the maximum number that can be marked). If this is the case,
the voter is given the opportunity to correct his/her vote.

After the election is closed, the results from each of the DREs
and scanners at a polling place are collected on a DTD and re-
turned to election central, where they are read into the election
management system to produce a tally for the entire area.

15

Figure 1: High-level overview of an election system’s compo-
nents and of the election process.

3. EXPERIENCE IN TESTING
REAL-WORLD VOTING SYSTEMS

We were asked to evaluate the security of two electronic voting
systems: one produced by Sequoia, the other by ES&S. As part
of our evaluation, we developed a security testing methodology
and a number of tools. For reasons of space, we will only briefly
mention these. Instead, we will discuss more in detail the findings
of our testings.

We have developed a five-step testing methodology that can help
security engineers in designing experiments to evaluate the secu-
rity of an electronic voting system. This is a high-level approach
that focuses on finding bugs and design errors that can potentially
be exploited by an attacker. The methodology guides testers in the
process of gathering the information and resources required for
the testing, identifying possible attack vectors and defining threat
models, attacking a single component of the voting system, and
leveraging an initial compromise to take control of the entire sys-
tem.

We also developed a number of custom tools in order to perform
the required analysis. These include firmware readers and writers,
support tools for the debugging of DREs, DTD readers and writers,
and a framework to easily patch a firmware and test it.

By using our methodology and tools, we discovered a number of
previously-unknown vulnerabilities in both the Sequoia and ES&S
systems. Perhaps the most troubling finding was the pervasive
presence of exploitable software defects (e.g., buffer overflows)
allowing the execution of arbitrary code of an attacker’s choosing.
In some cases, these defects allowed us to gain full control of the
affected machines. Another area of significant concern was the
general lack or misuse of cryptographic techniques to ensure the
integrity of critical election data. These oversights allow an at-
tacker, for instance, to forge authentication tokens and cast a vote
multiple times. A third problematic area was the incompleteness
of the specification of the system requirements and the misconfig-
uration of the system environments. For example, the “autorun”
feature was enabled in Sequoia’s EMS and could be used by an at-

tacker to covertly run a malicious program on the system. Finally,
contrary to the claims of the vendors, the physical seals protecting
access to critical components of the machines were, in almost all
cases, not tamper-proof or even tamper-evident.

These vulnerabilities pervade each vendor’s voting machines
and allow a multitude of serious attacks to be executed under sev-
eral threat models. Furthermore, when considered in the context of
the system as a whole, they allow the execution of sophisticated at-
tack scenarios. We designed, implemented, and successfully tested
several of these scenarios on each of the analyzed systems.

As an example, we describe here a virus attack we executed
against the ES&S system. In an ES&S voting system deployment,
an attacker with access to a DRE loads a malicious firmware con-
taining the virus into the machine either by exploiting a vulnerabil-
ity or by directly modifying the on-board flash memory. When a
master DTD is inserted into the DRE to initialize it for the election,
the malicious firmware installs a copy of the virus on the DTD it-
self. Subsequent uses of the DTD to initialize other DREs result
in those machines being infected through a ballot-loading exploit.

During pre-election logic and accuracy tests, the firmware be-
haves as expected. During the election, however, the malicious
firmware carries out vote stealing attacks. Examples of these at-
tacks include:

• Modifying the ballot such that the favored candidate is voted
for even if not selected.

• Modifying uncompleted ballots when the voter has fled (a
“fleeing voter” is a voter that has only partially completed
the voting process and has left the voting station).

• Printing a ballot summary and indicating that voting is com-
plete, waiting until the voter has left, voiding the requested
selections, and then casting a modified vote.

• Simply casting a modified ballot that disagrees with the pa-
per audit trail.

After the election has ended, the infected DTD is transported
by an elections official to the county elections office, where the
votes are transferred into the EMS. During this operation, a vul-
nerability in the EMS is exploited such that the virus is installed
also in the EMS, allowing the possibility of further attacks against
the election.

After the tallying and reporting process has completed, the virus
remains dormant on the EMS host until the next election. At this
time, the virus will infect the master DTD that is programmed to
initialize the DREs for that jurisdiction, and the infection cycle
will continue.
4. REFERENCES
[1] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger,

R. Kemmerer, W. Robertson, F. Valeur, and G. Vigna. Are
Your Votes Really Counted? Testing the Security of
Real-world Electronic Voting Systems. To appear in
Proceedings of the International Symposium on Software
Testing and Analysis, 2008. Available at
http://www.cs.ucsb.edu/˜marco/data/
papers/issta08_evote.pdf

[2] P. McDaniel, M. Blaze, and G. Vigna. EVEREST: Evaluation
and Validation of Election-Related Equipment, Standards and
Testing. Ohio Secretary of State’s EVEREST Project Report,
December 2007.

[3] G. Vigna, R. Kemmerer, D. Balzarotti, G. Banks, M. Cova,
V. Felmetsger, W. Robertson, and F. Valeur. Security
Evaluation of the Sequoia Voting System. Top-To-Bottom
Review of the California Voting Machines, July 2007.

16

Quantum Online Memory Checking

Qingqing Yuan
qqyuan@cs.ucsb.edu

Wim van Dam
vandam@cs.ucsb.edu

ABSTRACT
We consider the problem of storing information on an unre-
liable server, whose memory can be modified by a malicious
party. Our main task is to design an online memory checker
that is able to verify that the stored information has not
been corrupted. When storing n bits of public information,
the memory checker is allowed to have s private, reliable
bits and for each bit retrieval it can query the public mem-
ory for t bits of information. Previously it has been shown
that for classical memory checkers there is a lower bound
s× t ∈ Ω(n). Here we study quantum memory checkers that
have s private qubits and are allowed to quantum query the
public memory using t qubits. We propose a quantum on-
line checker that usee s ∈ O(log n) qubits of local memory
and t ∈ O(log n) qubits of communication with the public
memory by using quantum fingerprints.

1. INTRODUCTION
The problem of memory checking was first introduced by
Blum et al. [1] as an extension from the field of program
checking. In this problem, a memory checker receives a se-
quence of “store” and “retrieve” operations issued to an un-
reliable memory from a user, and it receives responses to
these requests from the memory. By making additional re-
quests to the unreliable memory and using a small private
and reliable memory for storing additional information, the
checker is required to give correct answers to the retrieve op-
erations with high probability. An online memory checker
must detect the error immediately after receiving an errant
response from the memory.

There are two main complexity measures regarding mem-
ory checkers: the space complexity, which is the size of its
private reliable memory, and the query complexity, which is
the number of queries made to the public (unreliable) mem-
ory per user request. The goal is to have a secure checker
with low space complexity and query complexity against
any probabilistic polynomial time adversary corrupting the
publc memory.

With s be the space complexity and t the query complexity
of an online memory checker, both Blum et al. [1] and Naor
and Rothblum [3] proved that for classical online memory
checking one has the lower bound s× t ∈ Ω(n).

Here we present an online memory checker that uses quan-
tum fingerprints, and which requires only s ∈ O(log n) bits
of private memory and t ∈ O(log n) queries to the pub-

lic memory. Specifically we show that for an error rate
ε > 0, it is sufficient for the memory checker to privately keep
O(log(1/ε)) copies of the quantum fingerprints of the public
memory with each fingerprint requiring O(log n) qubits.

2. CLASSICALANDQUANTUMMEMORY
CHECKERS

Here we extend the definition of memory checker to the
quantum setting.

Definition 1. Memory Checkers (see [1, 3]). A mem-
ory checker is a probabilistic Turing machine C with five
tapes: a read-only input tape for C to read the requests from
user U , a write-only output tape for C to write its response
to the user’s requests or that the memory M is “buggy”, a
write-only tape for C to write requests to M, a read-only
tape for C to read the response from M, and a read-write
work tape as a secret, reliable memory.

Figure 1: A quantum mechanical memory checker:
The user presents classical “store” or “retrieve” re-
quest to the checker, which, with high probability,
returns the correct answer or reports buggy when
the memory has been corrupted. In the quantum
mechanical scenario, the checker can make quantum
queries to the memory, such that it acquires a super-
position of values. In addition, the checker is also
allowed to have a small, private and secure worktape
that consists qubits.

In our quantum mechanical extension of this definition the
input and output tape between C and U both remain classi-
cal, as well as M. The checker C, however, is now allowed
to make quantum queries to the memory M and the secret

17

work-tape of C and the two read and write-only tapes be-
tween C and M now support quantum bits. This model is
illustrated in Fig. 1.

There are two important measures of the complexity of a
memory checker: the size s of its secret memory (the space
complexity) and the number t of bits exchanged between C
and M per request from the user (the query complexity).
Obviously, if the secret memory is sufficiently large, the so-
lution to this problem is trivial as C can simply store the
n bits on its work-tape. More interesting is the case where
the space complexity t is sublinear (typically logarithmic)
in n. As noted in the Introduction, it is known that for
classical online memory checkers, we have the lower bound
s× t ∈ Ω(n) [3]. Below it will be shown that with quantum
memory checkers one can get an exponential reduction on
this lower bound.

3. QUANTUMALGORITHMFORONLINE
MEMORY CHECKING

In this section, we have the main theorem of this paper.

Theorem 1. There exists a quantum online memory checker
with space complexity s ∈ O(log n) and query complexity
t ∈ O(log n), where n is the size of the string being stored.
This checker answers the user correctly with constant prob-
ability at least 1− ε (with ε < 1

2)) when the memory M acts
correctly, and it outputs buggy with probability at least 1− ε
when M has been corrupted.

Let x = x1 . . . xn be the string that the user U wants to write
to the public memory M. The memory checker C computes
an error correcting code of x and writes the codeword E(x)
toM. Here we use a locally decodable code (see for example
Katz and Trevisan [2]) such that a single bit xj of the origi-
nal data can be probabilistically reconstructed by reading a
small number of locations in the encoding E(x).

|0〉 H • H !"!!
|ψx〉

SWAP
|ψy〉

The quantum algorithm for the online memory checker uses
this code as follows. The memory checker maintains k copies
of the quantum fingerprint |ψx〉 =

∑
j(−1)Ej(x) |j〉 of x in

its private memory (the value of k will be determined later)
and every time a “retrieve” instruction comes, it obtains k
copies of fingerprints |ψy〉 of the current state of the public
memoryM. Using the“controlled-SWAP”circuit above, the
checker compares these new quantum fingerprints with those
in the checker’s private memory. The checker can detect any
malicious changes that would corrupt the decoding of E(x)
to the public memory with high probability. When analyze
the correctness and security of this quantum online memory
checker, we have the following lemma.

Lemma 1. If a checker uses error correcting codes with
Hamming distance between at least deltam (where δ > 0
is a constant) and

⌈
log ε

log(1−2δ+2δ2)

⌉
copies of |ψy〉 and |ψx〉,

then the checker will detect the difference between the two
fingerprints with probability at least 1− ε.

Due to the space limit, we omit the proof of Lemma 1 and
Theorem 1 here.

4. AN OPEN PROBLEM
The quantum online memory checker in this article employs
quantum mechanism both in its local memory and in the
communications with the public memory. A variation of
this model is a checker that stores quantum information in
its local memory, but communicates in classical bits with
the public memory.

In a simultaneous message protocol, Regev and De Wolf have
shown that, if one message is quantum while the other is re-
stricted to be classical,it requires a Ω(

√
n/ log n) bits/qubits

to compute the Equality function [4], and hence such a hy-
brid setting is not significantly more efficient than the purely
classical setting. This result however does not directly trans-
late into a new lower bound on the s × t complexity for
quantum memory checking with classical communication.

Using the same techniques as in [3], a quantum online mem-
ory checker with classical queries can be reduced to a modi-
fied“consecutive messaging”(CM) protocol. In this CM pro-
tocol, Alice is allowed to send quantum messages to Carol
and publish a quantum public message, while Bob is re-
stricted to classical messages. For this CM protocol, there is
an efficient solution as follows: after having received an input
x, Alice computes her quantum fingerprints |ψx〉 and pub-
lishes them as a public message; Bob, receiving y, computes
his quantum fingerprints |ψy〉 and compares it with |ψx〉;
Bob then sends Carol the result of the controlled-SWAP
test, who outputs the final result. The communication com-
plexity for this protocol is O(log n).

Due to the difference between the quantum-classical CM
model and simultaneous messaging protocols for Equality
testing, it is not easy to draw a conclusion for the lower
bound of quantum online memory checking with classical
communications. Nevertheless we conjecture that there is
no efficient quantum online memory checker for this setting.

5. CONCLUSION
In this paper, we consider the problem of constructing an
online memory checker. By using the quantum fingerprints,
we reduce the space complexity s and query complexity t
from s× t ∈ Ω(n) to s ∈ O(log n) and t ∈ O(log n).

6. REFERENCES
[1] M. Blum, W. Evans, P. Gemmell, S. Kannan, and

M. Naor. Checking the correctness of memories.
Algorithmica, 12(2/3):225–244, 1994.

[2] J. Katz and L. Trevisan. On the efficiency of local
decoding procedures for error-correcting codes. In
Proceedings of ACM Symp. on Theory of Computing,
pages 80–86, 2000.

[3] M. Naor and G. N. Rothblum. The complexity of online
memory checking. In Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science,
pages 573 – 584, 2005.

[4] O. Regev and R. de Wolf. Personal communication.
Auguest 2007.

18

Managing Big Dataflow Tags with a Small Cache of Large Ranges

Mohit Tiwari, Banit Agrawal, Shashidhar Mysore, Jonathan K Valamehr, Timothy Sherwood

1 Introduction

Web applications routinely handle sensitive data such as financial
transactions and private health records. While this makes security
and privacy management critically important, a recent security as-
sessment of 250 Web applications by the Application Defense Center
found that at least 92% of the applications were vulnerable to some
form of attack [11]. In addition, software “bugs” themselves have
been estimated to cost the US economy $59.5 billion annually [6].
Increasingly sophisticated dynamic dataflow tracking tools are being
widely seen as a critical part of the solution to these problems. In this
paper, we present a dataflow tag management scheme that can be a
key step in the practical realization of these tools.

2 Dataflow Tracking: Big Tags, Big Cost

The ability to tag and track data as it pumps through high perfor-
mance microprocessors is proving increasingly beneficial, as it en-
ables run-time checks for malicious code-injection [2], helps uncover
cross-site scripting attacks [3, 5], makes privacy easier to manage [8],
aids tracking memory errors more effectively [9], and helps to slice
and examine full systems in novel ways [4]. All of these techniques
rely on ISA-level extensions – shadowing all architecturally visible
state with tags; creating dataflow rules that ensure tags are effectively
tracked during execution; and forming policies around these tags that
address issues of software security, debugging, and performance.

Many proposals have explored how tag tracking can be efficiently
integrated into different stages of the processor pipeline to meet var-
ious analysis goals with low overheads [2, 8, 9, 3]. While current
hardware proposals support 1 or 2 bit tags per word, software-only
schemes that use large 32-bit tags per byte have been shown to be
useful in many scenarios. For example, dataflow tracking schemes
like [10] use 32-bit tags to not only identify a security breach but
also provide precise information about the malicious input and the
exploit’s execution path; [1] uses 32-bit tags to track null pointer
exceptions back to the program counter that stored the null value;
and [4] uses 32-bit tags to track network packets across language
runtimes, OS boundaries and over the network to understand and vi-
sualize complex distributed systems. Further, as shown in our orig-
inal article [7], language runtimes like Sun JDK and programs that
operate on strings like Firefox, bzip, parser etc. perform byte-level
accesses once in every 10 to 20 x86 instructions (average over all
SPEC programs is once in 1904 x86 instructions). Existing schemes
for storing tags do not scale to support such emerging tools, and us-
ing an existing tag cache for large, byte-level tags introduces an av-
erage slowdown of 9X for a 4KB tag cache.

Ideally, hardware support for a dataflow tracking system should
store large multi-bit tags efficiently and support fine-grain tracking
at low performance overhead. We have observed that dataflow tags
naturally exhibit a high degree of spatial-value locality, and can be
stored in compressed form as tags which cover non-aligned, con-
tiguous ranges of memory. However, there are several challenges
we need to overcome. One, even though tags naturally group into
contiguous address ranges, they do so incrementally through a bar-
rage of stores (as opposed to a single allocation) and for each update,
all possible range overlaps need to be resolved to store completely
non-overlapping ranges. Two, the maximumnumber of ranges that
are created during a program execution varies from a few tens to a
few thousands, and while the least number of ranges across bench-

marks is surprisingly small, the largest number precludes storing all
the ranges on-chip. This means we have to maintain a cache for
tags and deal with ‘misses’ on tag reads and evictions when new tag
ranges are created. Three, incremental aggregation causes the cache
to store unaligned ranges that vary from just 4B to almost 4GB in
size. For example, a range cache snapshot for gcc shows more than
82% of the cached ranges were below 64B in size while the largest
was over 2MB; this rules out using fixed (say, page) size range en-
tries. And finally, frequent updates (every 5 to 6 x86 instructions on
average) require stitching together ranges with very high throughput.
In this paper, we propose a Range Cache that associates tags with
non-aligned ranges and can track 32-bit tags at byte-level granularity
while still supporting the required rate of updates.

3 Range Cache Architecture

The Range Cache stores a set of 128 ranges each having a start

and end address. Each range has an associated metadata which in
our prototype is 32-bits. A read request should return the tags of the
ranges it overlaps, while an update request sets the new tag value to
be now associated with the new range of addresses. The tag values
previously associated with those addresses are overwritten, thus each
individual address has one and only one tag associated with it. This
new range can overlap with existing ranges in complex ways that
may require the existing ranges to be split up so as to always store
non-overlapping ranges.

Figure 1 shows the basic 2-stage pipeline at the core of our ap-
proach. Ranges are stored directly as a set of memory cells for start

and end with a separate comparator on each memory address. De-
ciding whether a given address overlaps with a range in the set then
translates into a simple parallel comparison of the query address over
the set of stored start and end values (in stage 1 of the pipeline).

The state machine in the second stage handles all of the overlap-
ping ranges that can occur (explained in detail in [7]). It handles the
overwhelmingly common cases fast: read requests that hit only one
stored range complete without stalls, as do “silent” updates that do
not modify the tag value. Of the remaining updates, most updates hit
only one range and is handled with a 2-cycle stall, while updates that
overlap multiple ranges take a few more cycles. The worst cases are
when reads miss or when an update creates a new range that causes
the range cache to overflow. Both cases require a software handler
to fetch or write back a range entry to the secondary tag store. The
secondary store is implemented as a two-level trie with the first level
nodes storing tags for 64B of the address space and the leaf nodes
storing byte-level tags if required. On a read miss, we only fetch
a range up to 64B in size so that fetching in a huge range doesn’t
become a bottleneck.

Finally, to reduce pipeline stalls, we use the fact that two pipelined
accesses are only dependent on one another if they access the same
ranges. By speculating that all accesses are independent, and squash-
ing those that are not, we have shown that the stall cycles can be
reduced by 32% on average([7]).

3.1 Results and Evaluation

We have implemented a synthesizable RTL model of the Range
Cache in Verilog. We also use this RTL model to count the exact
number of cycles required in those cases where complex operations
are required (such as deleting multiple range entries for example)
so that we can accurately reflect those counts in our performance

19

Figure 1: Range Cache Architecture: The first pipeline stage matches the start and end points of the new range, while the second stage is a state machine that
performs tag lookup and decides on the aggregated range entry to be written back.

estimation. This hardware design also allowed us to estimate the area
of our approach. The controller itself is just under 3000 logic gates
(which does not include the memory for the actual tag storage itself),
and when combined with the required memory, a 128-entry range
cache storing 32-bit tags is approximately the same size as 4KB of
memory.

We evaluate the miss-rate and estimate the performance impact
across several dataflow tracking tools – 1-bit Taint Tracking for an
online bookstore application developed on Ruby-on-Rails frame-
work with Mongrel web server, 2-bit Definedness Tracking similar
to Valgrind-Memcheck on SPEC benchmarks and Java-based XML
parser, and 32-bit Dataflow Tomography correlating usage of net-
work data bytes for various networking applications like ssh, scp,
lynx, traceroute, and the Ruby-on-Rails based online bookstore ap-
plication. Instructions executed by the range cache miss-handler and
memory hierarchy pollution are the two major contributors to perfor-
mance overhead, and while in this section we show that range cache
rarely misses, a detailed breakdown of sources of slowdown can be
found in our original article [7].

Figure 2 shows the average miss rate of a range cache for all tested
tools while the cache size varies from 4 to 128 entries. Results show
that a range cache improves markedly with size up to 32 entries and
the improvement plateaus out thereafter. At 128 entries, the average
miss rate for definedness tracking on SPEC benchmarks is 1.57%
(sans ammp the average drops to 0.07%), while the network taint-
ing tools average is 0.54%. In comparison, a conventional 4KB tag
cache misses 20% for definedness tracking and 30% for network taint
tracking. The upshot of these misses is that a conventional tag cache
introduces up to 6X as many memory references and 10X as many L2
misses per 1000 instructions as the native program, while the range
cache introduces 1.5X the memory references and 2X as many L2
misses per 1000 instructions. As a result, a tag cache introduces a
slowdown of almost 9X over native execution while a range cache
limits the slowdown to 1.52X.

References

[1] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S. McKinley. Track-
ing bad apples: reporting the origin of null and undefined value errors. SIGPLAN
Not., 42(10):405–422, 2007.

[2] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention Or-
thogonal to Memory Model. In MICRO 37: Proceedings of the 37th an-
nual IEEE/ACM International Symposium on Microarchitecture, pages 221–
232, Washington, DC, USA, 2004. IEEE Computer Society.

4 8 16 32 64 128
0

5

10

15

20

Ra
ng

e
Ca

ch
e

M
is

s
Ra

te
 (%

) 1bTaint Tracking on Ruby-on-Rails
2b Definednesss Tracking on SPEC2K
2b Definedness Tracking without ammp
32b Taint Tracking on Ruby-on-Rails
32b Taint Tracking on network apps

Figure 2: The graph shows miss rate of Range Cache for varying number of
range entries

[3] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Information Flow
Architecture for Software Security. In 34th Intl. Symposium on Computer Ar-
chitecture (ISCA), 2007.

[4] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood. Understanding and
Visualizing Full Systems with Data Flow Tomography. In ASPLOS-XIII: Pro-
ceedings of the 13th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2008.

[5] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In 12th Annual
Network and Distributed System Security Symposium (NDSS ’05), 2005.

[6] NIST News Release. http://www.nist.gov/public affairs/releases/n02-10.htm.
2002.

[7] M. Tiwari, B. Agrawal, S. Mysore, J. K. Valamehr, and T. Sherwood. A Small
Cache of Large Ranges: Hardware Methods for Efficiently Searching, Storing,
and Updating Big Dataflow Tags. In Proceedings of the International Sympo-
sium on Microarchitecture (Micro), 2008.

[8] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. Rifle: An architectural frame-
work for user-centric information-flow security. In MICRO 37: Proceedings
of the 37th annual IEEE/ACM International Symposium on Microarchitecture,
pages 243–254. IEEE Computer Society, 2004.

[9] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. MemTracker: Ef-
ficient and Programmable Support for Memory Access Monitoring and Debug-
ging. In 13th International Symposium on High-Performance Computer Archi-
tecture (HPCA-13), February 2007.

[10] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross
site scripting prevention with dynamic data tainting and static analysis. February
2007.

[11] WebCohort Inc. Only ten percent of web applications are secured against
common hacking techniques. http://www.imperva.com/company/news/2004-
feb-02.html. 2004.

20

Automated Verification of MVC Web Applications

[Extended Abstract] ∗

Chris Bunch
University of California, Santa Barbara

cgb@cs.ucsb.edu

Taylor Ettema
University of California, Santa Barbara

tettema@cs.ucsb.edu

ABSTRACT
Recent years have witnessed an explosion of web applica-
tion development and mainstream use, with the much-hyped
“Web 2.0”phenomena of increasingly dynamic sites and user-
generated content only serving to fuel the growth. The se-
curity and reliability of these web applications is critical, yet
few tools currently exist to verify correctness. Large appli-
cation development frameworks exist to speed up develop-
ment and deployment, though major vendors do not offer
the power of correctness checking long provided by tools
traditionally applied to critical, compiled applications. We
introduce a web application verification framework that al-
lows the developer to enforce state machine semantics on a
web application, and enables the checking of CTL properties
against the whole application space. We demonstrate that
an enforced state machine model aids in the design of a more
complete, secure application, and by allowing the designer
to verify CTL properties, potentially serious logic errors can
be easily avoided.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software / Program Veri-
fication —Model checking

General Terms
Model checking, Model-View-Controller architecture

Keywords
WebFlow, SMV, PHP/Zend

1. INTRODUCTION
Automated verification has long proven itself an invaluable
tool in verifying correctness of compiled, realtime, critical
applications and embedded systems [1]. As web applications
gradually replace traditional, locally installed/compiled ap-
plications in many critical domains, verification of this new
programming model has become of significant importance.

Verification of web applications is a relatively recent area
of study, in which classic verification techniques are applied
to web application code in order to prove the correctness
of various aspects of the system. However, the challenges
of verifying web applications are quite different from tradi-
tional applications. Perhaps the most significant difference

∗A full version of this paper is
available at http://cs.ucsb.edu/∼
cgb/papers/automatedVerification.pdf

is the nature of the state, and the transitions between states.
A typical application can be modeled as a state machine in
a relatively straight-forward way, as the program code has
control over execution flow. The state of the machine can be
modeled as a union of the program counter and the contents
of registers and memory. The state of a web application,
however, is less straight-forward, as a non-trivial use case of
a typical web application consists of dozens of transactions
over a period of time, each triggered by an HTTP request
that can invoke various fragments of code across the entire
site.

The key realization in verifying web applications is that the
most interesting properties that would benefit greatly from
verification span over many HTTP requests. This assertion
suggests that line-by-line verification of source code, while
mildly useful, does not catch the most damaging logic errors
that require a series of client-server interactions before they
are exposed. Furthermore, this type of bug is increasingly
pervasive, as many developers fail to grasp the inherent se-
curity risks associated with web application development.
Some of the most common bugs stem from a visit to a par-
ticular script/page that was unanticipated by the developer
under the present conditions. While many modern applica-
tion development frameworks have sought to alleviate this
problem, they have not eliminated it.

In order to introduce CTL verification to web applications,
we have developed a plugin for the popular Zend Framework
for PHP that allows the developer to describe in XML the
desired functionality of the application as a state machine.
The plugin ensures that only the transitions described by the
XML specification are allowed, thus ensuring that the speci-
fication is an accurate depiction of the web application’s flow
of execution. Additionally, we provide a verification applica-
tion that converts an XML specification into an executable
SMV model, allowing the user to run CTL formulas against
the model. The results of the SMV run are displayed to the
user, providing either a reassuring confirmation of sound cor-
rectness or an indication of a property violation, along with
a characteristic execution trace.

2. WEB APPLICATION STATE MACHINE
PLUGIN

Building an automated verification framework for modern
MVC-based web applications first required a method of defin-
ing and enforcing state machine semantics on a web appli-
cation’s flow of execution. We drew our inspiration from

21

Figure 1: Representation of XML transitions as a finite state machine

the Spring Framework for Java [2], which includes a novel
feature called “WebFlow” which allows the developer to seg-
ment the web application into distinct“flows” that each have
an enforced flow of execution, as specified by an XML docu-
ment. By leveraging the extendible capabilities of the Zend
Framework, we developed a router plugin (WASM) that pro-
vides similar functionality, reading a state machine specifica-
tion as input, while enforcing the described flow of execution
with each HTTP request.

Upon visiting the application for the first time, a session is
established. The session stores the last state the user visited,
along with the values of any atomic properties that have
been computed in the past. Each request submitted by the
user is routed through the WASM plugin before dispatching.
The requested state (such as a page view) is compared with
the last visited state. If an edge connecting the last state
to the requested state exists, and all the predicates on the
edge (if any) are satisfied, then the router allows the request
to be dispatched unmodified. However, if there is a problem
with the request, the router defaults back to the last viewed
state, effectively performing a page refresh.

3. AUTOMATED VERIFICATION FRONT-
END TOOL

By exploiting the MVC design pattern and creating the
WASM Zend Framework plugin, we now have an enforce-
able state machine that can be modeled with a standard
verifier tool. While verification and state machine modeling
of web applications have each been done independently [3],
our key contribution is combination of these two elements in
order to provide the ability to perform meaningful property
verification on real-world applications.

The WASM Verifier Tool (WASM-VT) provides this capabil-
ity, bridging the gap from the XML transition specification
to an executable SMV model that can be verified. WASM-
VT is, in itself, a web application, that is designed to be
used by the developer to perform verification tasks. The
user starts by providing the tool with the XML transition
specification file. WASM-VT parses the file and transforms
it into an executable SMV file behind the scenes. Meanwhile,
the user is presented with a list of states and atomic proper-
ties that the XML file contains. The user is then prompted
for a list of CTL properties to verify. Upon submission, the
tool invokes SMV in the background, verifies the properties,
and returns the result to the user. The tool either indicates
that the formula(s) hold, or, in the event of a violation, the
user is presented with a characteristic path of execution that

violated the constraint.

4. LIMITATIONS AND FUTURE WORK
Currently, WASM is restricted to boolean logic for verifica-
tion of state transitions. More advanced conditional checks
(such as bounds checking) could prove very useful to the de-
veloper, providing the capability to design more complicated
transition predicates that rely on the value of an integer,
for example. This capability is not trivially implementable,
however, and we plan to investigate the viability of this ad-
dition to our verifier in future work.

5. CONCLUSION
In this work, we present a viable automated verification
solution for MVC web applications written in PHP using
the Zend Framework. By controlling the dynamic behav-
ior of the application using the WASM plugin, we are able
to provide more meaningful static verification opportunities
to the developer. In what may be the first deployment of
automated verification on web applications at the session
scope (i.e. verifying logic across a series of request-response
events), we exploit the organization inherent to the MVC ar-
chitecture in order to expose a system of states, transitions,
and atomic properties that can serve as input to a verifica-
tion tool. WASM and the WASM-VT application provides
a verification framework for web applications that can be
used to check correctness of truly useful properties across
the scope of the entire application, from the first client re-
quest to the last server response.

6. REFERENCES
[1] E.M. Clarke, O.M. Grumberg, and D.A. Peled. Model

Checking. 1999.
[2] K. Donald, E. Vervaet. Spring Web Flow, July 2005.

http://springframework.org/webflow

[3] E. Di Sciascio , F.M. Donini, M. Mongiello, R. Totaro,
and D. Castelluccia. Design Verification of Web
Applications Using Symbolic Model Checking. 2005

22

CycleNet: Empirical Analysis of 802.15.4 in Mobile
Scenarios

[Extended Abstract]∗

Navraj Chohan and Camilla Fiorese
Dept. of Computer Science

University of California, Santa Barbara
{nchohan, camilla}@cs.ucsb.edu

ABSTRACT
We present empirical data of communication between 802.15.4
devices in static and mobile scenarios. We evaluate the body
factor between two devices in a cycling environment and
show it has a significant impact on communication. Our
findings show that RSSI is severely hampered as an indi-
cator of reception quality and that LQI serves as a much
more reliable indicator in a mobile setting. Additionally, we
show that different bicycling speeds do not adversely affect
802.15.4 communication.

1. INTRODUCTION
With the rising cost of oil, interest in alternative means of
commuting has increased tremendously. Throughout the
world, bicycles are the main source of transportation and
bicycling is participated in as both sport and hobby. Nev-
ertheless, many cities lack adequate bicycle paths and ac-
commodations for cyclists. With foreseen greater interest
in bicycling, cyclist themselves can take part in networking
amongst fellow riders to share information with each other
and city planners. Lightweight, low power, and autonomous
embedded devices can allow for a greater experience for peo-
ple throughout the bicyclist spectrum; from the casual rider
to the cycling enthusiast.

We examine different aspects of inter-cycle communication
to better understand factors which can affect application and
protocol design for people-centric sparse mobile networks.
Our research looks to model mobile to mobile communica-
tion between bicycles using 802.15.4 devices with empirical
measurements. The devices we use for our experiments are
MICAz motes which are produced by Crossbow. They have
the CC2420 Chipcon radio which uses the unlicensed 2.4
GHz ISM spectrum with a data rate of 250kbps. The MAC
layer is CSMA and the physical layer does QPSK modula-

∗A full version of this paper is available at
http://www.cs.ucsb.edu/research/tech reports/

tion. It provides a received signal strength indicator (RSSI)
and a link quality indicator (LQI) for each packet received.
The RSSI is the power of the signal at the receiver and the
LQI value is the chip error rate of the demodulated signal.
Packet reception rate (PRR) is extracted through the use of
sequence numbers. Our mote software is written in TinyOS.

The case of bicycles communicating statically is first pre-
sented to attain a sound understanding of human interfer-
ence. The body of the rider is shown to give large amounts
of attenuation. We call this source of attenuation the body
factor. Furthermore, we show that within close range (one
bike length) the limited speeds of bicycles have little to no
affect on bicycle communication in comparison to the static
scenario. Yet, the body factor is a large source of attenua-
tion in which the communication range is cut dramatically.
This is in large part due to the orientation of cyclists in
relation to each other. In general, there is a leader and a
series of followers. Our experiments for both static and mo-
bile cases are reflective to these formations. Likewise, our
research caters to bicyclists who participate in groups rather
than by themselves.

There is a dearth of research in mobile communication for
people-centric sensing. Previous studies have had limited
findings on either the body factor or mobile scenarios with
low power radios. Much previous work has looked at static
communication which reports phenomena such as asymmet-
ric links, gray receptions areas, antenna orientation sensitiv-
ity, height sensitivity, and other complex radio behavior [4,
5, 2, 6]. In [3] the authors present empirical experiments
for the characterization of 802.15.4 devices worn by people
in low mobility environments. But, there has yet to be any
characterization of people-centric communication in highly
mobile environments. Our research is the first study to deal
directly with the issue of speed variability when character-
izing 802.15.4 communication. In addition, we extrapolate
on the body factor for such environments.

Our work looks at low power inter-bicycle communication
for systems such as [1] and presents the factors which can
cause unreliable connectivity in mobile bicycle networks.

2. RESULTS
Figure 1 shows the PRR, RSSI, and LQI for our first experi-
ment where a sender node was followed by a series of receiver
nodes all located on an open field. The sender node was ei-

23

(a) PRR (b) RSSI (c) LQI

Figure 1: Packet reception quality for the static scenario

(a) PRR (b) RSSI (c) LQI

Figure 2: Packet reception quality for the mobile scenario

ther mounted on a wooden stick, a bike, or a bike with a
human, respectively. With the stick or bike experiment the
reception quality is near 100% until the 11th bike length at
which point there is a drop off. With the introduction of
the body factor there is a dramatic decrease in packet re-
ception. The disturbance is also seen in the RSSI and LQI.
The RSSI enters a gray zone, where it is no longer a good in-
dicator of reception quality, when past 11 bike lengths. Yet,
with the addition of the body factor this gray zone is reached
in half the distance. Moreover, there is great variance with
the body factor when under 11 bike lengths showing that
packet reception can wildly vary even in close proximity.

Further experiments show that with different body types,
where our experiments ranged from 125lbs to 207lbs, the
body factor gave the same amount of attenuation. Figures
for that experiment are not shown here.

From the results and insights we gained from a static setting
we transition to a mobile scenario where the body factor is
always present.

We found that with varying speeds of 5, 10, and 15mph the
reception quality was the same throughout when bicycling
directly behind the sender. Packet reception stayed close to
99% which was also seen in the LQI and RSSI.

Figure 2 shows the reception quality between a sender and
receiver traveling at 10mph at different distances of 1, 2, 4,
and 8 bike lengths. Consider the average PRR for the four
different distances; the reception experience a tremendous
degradation when the distance increases. For 8 bike lengths
the reception is below 65%, far lower than our reported static

case without body interference. We observe the degradation
of the signal with the RSSI entering the gray area. But, LQI
still proves to be a better predictor of PRR.

3. REFERENCES
[1] S.B. Eisenman, E. Miluzzo, N.D. Lane ans

R.A. Peterson, G.S. Ahn, and A.T. Campbell. The
BikeNet Mobile Sensing System for Cyclist Experience
Mapping. In International Conference on Embedded
Networked Sensor Systems (SenSys), November 2007.

[2] D. Lymberopoulos, Q. Lindsey, and A. Savvides. An
Empirical Characterization of Radio Signal Strength
Variability in 3-D IEEE 802.15.4 Networks Using
Monopole Antennas. Springer-Verlag Heidelberg Lecture
Notes in Computer Science, 3868(2006), 2006.

[3] E. Miluzzo, X. Zheng, K. Fodor, and A.T. Campbell.
Radio Characterization of 802.15.4 and its Impact on
the Design of Mobile Sensor Networks. Springer-Verlag
Heidelberg Lecture Notes in Computer Science,
4913(2008), 2008.

[4] J. Polastre, R. Szewczyk, D. Culler, and W.S. Conner.
Telos: Enabling Ultra-Low Power Wireless Research. In
Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks, Los
Angeles, California, USA, April 2005.

[5] K. Srinivasan and P. Levis. RSSI is Under Appreciated.
In Workshop on Embedded Networked Sensors
(EmNets), May 2006.

[6] J. Zhao and R. Govindan. Understanding Packet
Delivery Performance in Dense Wireless Sensor
Networks. In International Conference on Embedded
Networked Sensor Systems (SenSys), November 2003.

24

EUCALYPTUS ∗

An Open Source Infrastructure for Cloud Computing Research

Chris Grzegorczyk
grze@cs.ucsb.edu

Dan Nurmi
nurmi@cs.ucsb.edu

Graziano Obertelli
graziano@cs.ucsb.edu

Sunil Soman
sunils@cs.ucsb.edu

Lamia Youseff
lyouseff@cs.ucsb.edu

Dmitrii Zagorodnov
dmitrii@cs.ucsb.edu

Rich Wolski
rich@cs.ucsb.edu

ABSTRACT
Elastic Computing, Utility Computing, and Cloud Com-
puting are synonymous terms referring to a popular vir-
tualization based computing paradigm that allows users to
”rent” Internet-accessible computing capacity on a for-fee
basis. While a number of commercial enterprises currently
offer Cloud hosting services and several proprietary software
systems exist for deploying and maintaining a computing
Cloud, standards-based open-source systems have been few
and far between.

EUCALYPTUS is an open-source software infrastructure
implementing ”cloud computing” on clusters. The overarch-
ing objective is to provide an overlay platform amenable to
installation and use on systems typically available to mem-
bers of the research community. Currently, EUCALYPTUS
is compatible with Amazon’s EC2 in the scope of its func-
tionality and can be utilized using Amazon’s own tools. The
system uses only commonly-available open source tools mak-
ing it easy to install, modify, extend and maintain. In this
paper, we discuss the design properties of EUCALYPTUS
and evaluate an example installation by comparing it with
EC2 to validate our approach.

1. INTRODUCTION
Cloud Computing has emerged as a popular virtualization-
based computing paradigm and has seen rapid uptake in
the small-and-medium business e-commerce market place.
First deployed by Amazon.com, a number of service hosting
enterprises and technology providers have since developed
”utility,” ”cloud”, or ”elastic” product and/or service offer-
ings [3, 1, 9, 8]. Fundamentally, the cloud computing model
is to provide a large user base with the ability to program
some specified fraction of the resources hosted by a scal-
able service provider (e.g., Google [7], Amazon [4], Sales-
Force [10], 3Tera [2], etc.) through one or more well defined
service interfaces. However, the proprietary nature of exist-
ing systems has resulted in a derth of information about how
they work: fundamental questions are unasked or unanswer-
able. Currently, it is not possible (or at least not easy) for
researchers to build, deploy, modify, instrument, or experi-
ment with a cloud infrastructure under their own control.

Here we present EUCALYPTUS – Elastic Utility Comput-
ing Architecture for Linking Your Programs to Transiently

9∗http://EUCALYPTUS.cs.ucsb.edu/

!"#

!$%&'()#*#

+"#

,"
#

,"
#

,"
#

,"
#

-)./0'(#

1('23)4#

!$%&'()#5#

+"#

,"
#

,"
#

,"
#

,"
#

-)./0'(#

1('23)4#

-%6$.7#

1('23)4#

Figure 1: EUCALYPTUS architecture overview.

Useful Systems – an open source service overlay that im-
plements cloud computing as a user hosted service on top
of existing resources. A EUCALYPTUS installation aggre-
gates a set of virtualization-enabled hardware resources into
a “cloud” allowing a user to control collections of networked
virtual machine instances. This paper focuses on specific
innovations needed to provide an easy-to-install and main-
tain cloud service related to virtual machine control, net-
work overlay provisioning, security and user management,
and modularity/extensibility.

2. EUCALYPTUS
The architecture of EUCALYPTUS is simple, flexible and
modular with a hierarchical design reflecting common re-
source environments found in academic settings. The sys-
tem allows users to start, stop, and access virtual machines
using Amazon EC2’s SOAP and Query interfaces (i.e., with
Amazon’s provided tools). Currently, we support VMs that
run atop the Xen [5] hypervisor, but plan to add support for
others [6, 12] in the near future.

Three tiers of components comprise a EUCALYPTUS in-
stallation (Figure 1): Node Manager controls the execu-
tion, inspection, and termination of VM instances on the
host where it runs. Cluster Manager gathers informa-
tion about and schedules VM execution on specific nodes

25

and manages the virtual network. Cloud Manager is the
entry-point into the cloud for users and administrators. It
processes user-initiated or administrative requests, making
high-level VM instance scheduling decisions, processing service-
level agreements (SLAs) and maintaining persistent system
and user metadata.

Our design makes the following contributions as a research
platform: First, EUCALYPTUS leverages existing Linux
packaging support. The target resources need only run a
standard Xen-enabled kernel. Second, well-defined inter-
faces enable extension and modification through a language-
agnostic web services approach and traditional language-
level methods. Additionally, we make use of WS-Security
policies to secure internal communication. Third, a EUCA-
LYPTUS installation can function in an environment where
only a certain“head node” is externally routable while “com-
pute nodes” are on a private network. Fourth, a virtual net-
work connects instances across multiple clusters to a virtual
distributed ethernet isolated from the physical network [11].

3. EVALUATION
We have installed EUCALYPTUS on a small cluster and
made it publicly available as Our Public Cloud (OPC) 1. The
cluster consists of 7 nodes on an isolated network and one
frontend providing external network access. Each system
has two Intel Xeon 3.2GHz processors, 3GB of RAM and
40GB of disk.

The OPC is used here as the venue for an experiment il-
lustrating the cost in time for instantiating a collection of
instances. For this experiment, we measure the total time
between an instance execution request to the point when
we can first detect that the instance is running. Figure 2
shows two empirical cumulative distribution functions that
allow us to examine both the magnitude and variance of
time taken to create instances in EC2 and the OPC. Each
point represents the percentage (Y axis) of instance creation
trials that took at least the number of seconds denoted at
the point’s corresponding position on the X axis. For both
cases (one and eight instances) all empirical quantiles in the
OPC case are lower than those of EC2. The implementa-
tion of the OPC does seem to compare well with that of the
system it emulates suggesting that its implementation is, at
least, relatively high performance.

4. CONCLUSION
In this work, we EUCALYPTUS: an open-source implemen-
tation of a cloud computing system. Presently, we (and our
users) have successfully deployed the complete system on re-
sources ranging from a single laptop (EC2 on a laptop) to
small Linux clusters (48 to 64 nodes). Benchmarking EUCA-
LYPTUS against EC2 reveals that it is relatively efficient.
We plan to exploit EUCALYPTUS as a platform for inves-
tigating new ideas such as dynamic SLA generation, virtual
networking topologies, virtual IP mobility, secure cloud in-
frastructure, and novel user/administrator interfaces.

5. REFERENCES
[1] 3tera. 3tera. ”http://3tera.com”.

91http://eucalyptus.cs.ucsb.edu/wiki/EucalyptusPublicCloud

5 10 15 20 25 30 35

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EC2 1 Instance
OPC 1 Instance

5 10 15 20 25 30 35

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EC2 8 Instances
OPC 8 Instances

Figure 2: Empirical CDF comparing the number of
seconds taken to start one and eight VM instances
within EC2 and EUCALYPTUS.

[2] 3Tera home page. http://www.3tera.com/.
[3] Amazon. Amazon Elastic Compute Cloud (Amazon

EC2). ”http://ec2.amazonaws.com/”.
[4] Amazon.com home page. http://www.amazon.com/.
[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[6] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. Proceedings of the USENIX Annual
Technical Conference, FREENIX Track, pages 41–46,
2005.

[7] Google – http://www.google.com/.
[8] Google. Google’s AppEngine.

”http://appengine.google.com”.
[9] S. Microsystems. Network.com. ”http://network.com”.

[10] Salesforce Customer Relationships Management
(CRM) system. http://www.salesforce.com/.

[11] Virtual distributed ethernet (vde) home page –
http://vde.sourceforge.net/.

[12] Vmware home page – http://www.vmware.com.

26

Analyzing Performance and Efficiency of
Smoothed Particle Hydrodynamics

Rama C. Hoetzlein
Media Arts & Technology Program

University of California, Santa Barbara
Santa Barbara, CA 93106-5110

rch@umail.ucsb.edu

Tobias Höllerer
Department of Computer Science

University of California Santa Barbara
Santa Barbara, CA 93106-5110

holl@cs.ucsb.edu

ABSTRACT
With the rise in performance of modern GPUs, Smoothed
Particle Hydrodynamics is an increasingly attractive solu-
tion for real-time simulation of fluid flows in visual effects
for film and games. Starting with simulations of 2000 parti-
cles at 20 frames per second in 2003 [4], smoothed particle
hydrodynamics has now been simulated with over 242,000
particles at 4 fps using GPUs [6]. While performance has
clearly increased, the terms performance and efficiency are
often used interchangeably. Results of simulations, as pub-
lished in graphics journals such as SIGGRAPH, are typically
reported by giving the number of particles and frame rate
for a particular combination of CPU and graphics hardware.
This makes comparisons of algorithm implementations diffi-
cult since authors must deduce algorithm efficiency for dif-
fering hardware. The development of concrete metrics of
performance and efficiency will facilitate better comparison
between results. Simple metrics are presented here with an
analysis of real-time simulations over the past five years.

Categories and Subject Descriptors
I.3.5.i [Object Modeling]: Physically based modeling; D.2.8
[Software Engineering]: Metrics—performance measures

General Terms
Smoothed particle hydrodynamics, Simulation, GPU

1. INTRODUCTION
We present a simple metric for evaluating performance and
efficiency of real-time particle-based simulations. These met-
rics suggest new areas for increasing efficiency of smoothed
particle hydrodynamics, which are incorporated into our
fluid simulator, FLUIDS v.1. In addition, we use these met-
rics to deduce trends in algorithm implementation over time.
Our initial findings show that while performance has greatly
increased due to new GPU hardware, there has been a grad-
ual decline in algorithm efficiency over time.

Figure 1: FLUIDS v.1 simulating 3000 particles at
45 fps with shadow maps and depth of field. Paint
mixing is simulated with colored particles.

2. METHODS
To standardize simulation results we create simple metrics
for performance and efficiency. First, we combine frames per
second and number of particles to measure raw performance
as the number of particles simulated per millisecond.

Praw = #particles ∗ fps ∗ (1/1000)

Second, we estimate algorithm efficiency as the performance
achieved on normalized hardware by dividing raw perfor-
mance by hardware performance as measured in gigaflops.

E = Praw/Phardware

The units of E are number of particles simulated in 1 ms
on 1 gigaflop of hardware. Table 1 shows the author, year,
performance and efficiency of several key real-time smoothed
particle hydrodynamics papers from 2003 to 2008. All meth-
ods compared use a spatial grid to give O(kn) behavior. Raw
simulation rates are given without rendering. While the
typical spatial grid technique used in SPH scales linearly,
we also observed efficiency differences based on number of
particles. In the table, the highest performance measure
provided by the author in reported.

Performance estimates for CPU versus GPU hardware are
more difficult as the GPU implementations introduce par-
allelism and memory transfer overhead. Raw results are re-
ported, so these factors will be observed in our efficiency
measures. In the future we hope to quantify and elimi-
nate this overhead from our metrics. NVIDIA’s own demo
achieves the highest GPU efficiency (5.69), similar to Harada

27

Table 1: Performance and efficiency of real-time smoothed particle hydrodynamics simulations.
Author Year # Particles FPS Performance Hardware Gflops Efficiency
Muller[4] 2003 2200 20 44.00 P4 1.8 ghz 3.6 12.22
Amada[1] 2003 2000 30 60.00 P4 2.8 ghz 5.6 10.71
Kontar[3] 2004 2000 18 36.00 XP 2200 4.4 8.18
Horvath[2] 2007 30000 0.50 15.00 P4 3.0 ghz 6.0 2.50
Harada (CPU)[6] 2007 262144 0.15 39.32 X6800 2.93 5.86 6.71
Harada (GPU) 2007 262144 4.23 1108.86 8800GTX 345.6 3.21
Harada[7] 2007 49153 17 835.60 8800GTX 345.6 2.42
Zhang[8] 2007 60000 15 900.00 8800GTX 345.6 2.60
NVIDIA[5] 2008 32768 60 1966.08 8800GTX 345.6 5.69
FLUIDS v.1 (CPU) 2008 3000 45 135.00 XP64 3.2 ghz 6.4 21.09

for the CPU (6.71), but still well below Muller’s original pa-
per (12.22) which implements a cache-coherent algorithm to
optimize for the CPU. This suggests that both industry and
academic implementations have not yet been fully optimized
for the GPU.

The historical trends are also interesting. While overall per-
formance has jumped by 20x due to new hardware, algo-
rithm efficiency appears to have gradually declined even for
the same hardware. While providing generous estimates for
GPU parallelism overhead, implementations still appear to
be less efficient than earlier authors. This supports our view
that standardized measures of performance and efficiency
are needed for publications in this area.

3. IMPLEMENTATION
A study of algorithm efficiency has suggested specific areas
for improvement. Several of these improvements are incor-
porated into FLUIDS v.1, a simple, fast, open source im-
plementation of Smoothed Particle Hydrodynamics. While
currently running on the CPU only, FLUIDS v.1 is shown
to be 3x more efficient than Harada [6], suggesting our GPU
version should support 200,000 particles at 30 fps.

Smoothed Particle Hydrodynamics is a Lagrangian solution
to the Navier-Stokes fluid equations. Simulation consists of
three basic steps: 1) Computing density and pressure of all
particles. 2) Computing forces on particles, 3) Advancing
the simulation by integration. The essence of the SPH tech-
nique is that density, pressure, and force are computed by
considering weighted contributions from neighboring parti-
cles.

A purely näıve implementation of density in step #1 requires
O(n2) calculations. By inserting particles into a grid a par-
ticle need only check neighboring grid cells for contributing
particles within a given radius, called the smoothing radius
r. We notice that following Muller, all publications we stud-
ied use a grid size equal to r, requiring that each particle
check 27 grid cells (3x3x3). However, if a grid size of 2r is
used, then only 8 grid cells (2x2x2) must be checked.

Other efficiency gains in the SPH algorithm were found
through basic programming: eliminating variables, manu-
ally in-lining vector algebra. Taking a pure programming
perspective, the SPH steps are essentially doubly-nested loops.
Thus we improve efficiency in FLUIDS v.1 by reducing the
inner loop for force computation to just 11 lines of C.

4. CONCLUSIONS
It is well known that choice of algorithms has the most sig-
nificant effect on scalability. However, for a given algorithm
the details of implementation can still influence efficiency by
orders of magnitude. This constant factor is often a make-
or-break effect in real-time applications. More importantly,
in the development of real-time fluid simulation, poor met-
rics for reporting academic results have possibly masked a
steady decline in algorithm efficiency behind rapid advances
in hardware performance. This situation may be improved
in the future by making clear distinctions between perfor-
mance and efficiency. FLUIDS v.1 demonstrates a stable,
fast, open source implementation of Smoothed Particle Hy-
drodynamics with a measured efficiency at least twice that of
other implementations. Current goals include optimization
and measurement of a GPU version of FLUIDS.

5. REFERENCES
[1] T. Amada. Real-time animation of water. Retrieved:

http://chihara.aist-nara.ac.jp/people/2003/takasi-a,
2003.

[2] P. Horvath and D. Illes. Sph-based fluid simulation for
special effects. In Central European Seminar on
Computer Graphics. Conference, April 2007., 2007.

[3] S. Kontar. Real-time fluid simulation. Master’s thesis,
Brno Univ. of Technology, Brno, Czech Republic, 2004.

[4] M. Müller, D. Charypar, and M. Gross. Particle-based
fluid simulation for interactive applications. In SCA
’03: Proceedings of the 2003 ACM SIGGRAPH
symposium on Computer animation, Aire-la-Ville,
Switzerland, 2003. Eurographics Association.

[5] NVIDIA. Particle demo from CUDA SDK 10, 2008.
[6] S. K. T. Harada and Y. Kawaguchi. Smoothed particle

hydrodynamics on GPUs. In The Visual Computer,
Petropolis, Brazil, 2007. Springer. From proceedings of
Computer Graphics International.

[7] S. K. T. Harada, M. Tanaka and Y. Kawaguchi.
Real-time particle-based simulation on GPUs. In ACM
SIGGRAPH 2007 posters, page 52, New York, NY,
USA, 2007. ACM Press.

[8] Y. Zhang, B. Solenthaler, and R. Pajarola. GPU
accelerated SPH particle simulation and rendering. In
ACM SIGGRAPH 2007 posters, page 9, New York,
NY, USA, 2007. ACM Press.

28

Client and Server Verification for Web Services Using
Interface Grammars∗

Graham Hughes Tevfik Bultan Muath Alkhalaf
Computer Science Department

University of California
Santa Barbara, CA 93106, USA

{graham,bultan,muath}@cs.ucsb.edu

ABSTRACT
Web services provide a promising framework for developing
interoperable software components that interact with each
other across organizational boundaries. For this framework
to be successful, the client and the server for a service have
to interact with each other based on the published service in-
terface specification. If either the client or the server deviate
from the interface specification, the client-server interaction
will lead to errors. We present a framework for checking
interface conformance for web services. Given an interface
specification, we automatically generate web service server
stubs (for client verification) and drivers (for server verifi-
cation) and then use these stubs and drivers to check the
conformance of the client and server to the interface specifi-
cation. We implemented this framework by using interface
grammars as the interface specification language. We devel-
oped an interface compiler that automatically generates a
stub or a driver from a given interface grammar. We con-
ducted a case study by applying these techniques to the
Amazon E-Commerce Service.

1. INTRODUCTION
In providing a framework that enables web accessible soft-
ware applications to interact with each other through the
Internet, Web services are providing a promising next step
in the evolution of electronic commerce. A crucial attribute
of the web services framework is interoperability; software
components from independent organizations should be able
to talk to each other. This is achieved through interface
specifications. Thus, conformance to these interface speci-
fications becomes very important if this attribute is to be
upheld. If either the client or the server deviate from the
interface specification, the client-server interaction will lead
to errors. Unfortunately it may not be easy to test the client
and server together since they may not belong to the same
organization.

∗This work is supported by NSF grants CCF-0614002 and
CCF-0716095.

Web Service

Requester
(Client)

Web Service

Provider
(Server)

WSDLSOAP

Request

WSDL specification lists

available operations,

arguments and return types

using XML Schema

SOAP protocol

for exchanging

XML-based messages

SOAP

Response

Figure 1: Basic architecture for web services

We present a framework that addresses this problem. Our
basic idea is, given an interface specification, to write inter-
face grammars for the specification; from those automati-
cally generate web service stubs (for client verification) and
drivers (for server verification); and finally use these stubs
and drivers to check the conformance of the client and the
server to the interface specification. We have developed a
tool that automatically generates stubs and drivers from
a given interface grammar. We target web services using
soap [3] and wsdl [4] to communicate; their basic architec-
ture is shown in Figure 1.

2. INTERFACE GRAMMARS
In previous work [1, 2], we have proposed interface gram-
mars as a new language for the specification of component
interfaces. The core of an interface grammar is a set of
production rules that specifies all acceptable method call
sequences for the given component. Given an interface spec-
ification for a component, our interface compiler generates
a stub for that component. This stub is a table-driven top-
down parser that parses the sequence of incoming method
calls (i.e., the method invocations) based on the interface
grammar defined by the interface specification.

We extend the usual notion of a grammar in a few impor-
tant ways to achieve this. We permit nonterminals to have
data parameters, which use call-by-value-return semantics.
This permits us to model ephemeral data, like the unique
identifier of an object, in our grammar as well as generate
recursive data structures. We permit semantic predicates,
which are blocks of code that must evaluate to true for a
production to be available. Finally we permit semantic ac-
tions, which may execute arbitrary Java code but do not
influence the parse.

29

stack ← [start ,⊥]
while stack $= [⊥] do

o ‖ stack ← stack
if o = nt(v1, . . . , vn) then ! nonterminal

Choose a production P of o;
a = 〈〈bind o’s arguments to v1, . . . , vn〉〉;
stack ← [a] ‖P ‖ stack

else if o = !p" ∧ ¬p then ! semantic predicate
fail

else if o = 〈〈a〉〉 then ! semantic action
Perform a

else if o = ?m(v1, . . . , vn) then
Receive the incoming method call m;
Bind m’s arguments to v1, . . . , vn

else if o = ¿m(v1, . . . , vn) then
Return from m with the values of v1, . . . , vn

else if o = !m(v1, . . . , vn) then
Call m with the values of v1, . . . , vn

else if o = ¡m(v1, . . . , vn) then
m returns;
Bind m’s return values to v1, . . . , vn

Figure 2: Generic stub/driver pseudocode gener-
ated by the interface compiler

For the purposes of the web service verification, the method
calls in the interface grammar represent the web service op-
erations used. A detailed description of the interface gram-
mar semantics can be found in [2, 1].

3. INTERFACE GRAMMAR COMPILER
To make these grammars useful, we must generate an ac-
tual web service driver and a web service stub in order to
perform client and server verification. We achieve this using
our interface compiler. Our compiler generates a web ser-
vice stub when given a specification for a web service server,
and a web service driver when given an interface for a web
service client. A web service stub generated by our interface
compiler is a top-down parser that parses the sequence of
incoming soap requests. A web service driver generated by
our interface compiler is a language generator which gen-
erates a sequence of soap requests based on the interface
grammar.

In Figure 2 we show the structure of a generic stub/driver
generated by our interface compiler. Here the semantics of
choose and fail depend on the environment we are running
in. In a conventional jvm, we could have choose randomly
select one of the options and fail throw an exception. When
running in a model checker, choose and fail hook into the
model checker’s internal backtracking to exhaustively ex-
plore the entire state space.

In order to make the generated stub/driver more efficient,
we pre-compute some information that might be useful in
choosing the next production. The details of this optimiza-
tion are discussed in our earlier work [1], but briefly we use
a modified ll(1) table parser whenever possible.

4. EXPERIMENTS
To demonstrate the value of our approach, we have per-
formed two distinct classes of experimentation on the Ama-
zon E-Commerce Service (aws-ecs). The first, the client
verification we detail here, involves verification of a demon-
stration client for the aws-ecs. We generate a stub for the

soap communication layer so that we can verify the client
without connecting to the aws-ecs and without any net-
work communication. The second, the server verification,
involves connecting directly to aws-ecs itself and checking
the aws-ecs implementation.

We performed our experiments on a demonstration of pro-
gramming technique called the aws-ecs Java Sample, sup-
plied by Amazon. This client performs no validation on its
input whatsoever; it is solely intended as an example for
how to use the interfaces. We use it to demonstrate the
bug finding capabilities of our approach. The client makes
two major classes of errors: 1) input errors that the client
ought to be catching but doesn’t, and 2) control flow errors
that represent execution sequences that are locally valid but
globally wrong. An example of the former is passing a string
when aws-ecs expects an integer; an example of the latter is
trying to modify contents of the cart after the cart has been
cleared. We will present data that demonstrates detection
of multiple examples of both classes of error in a handful of
minutes by running the client under the jpf model checker
using our framework.

As well as verifying the client, we want to verify the server
implementation. Our framework achieves this as well, by
using an interface specification to generate soap requests,
which are then sent to the web service. This is, in essence,
an on-the-fly sentence generator for the interface grammar;
we generate legal sequences of requests and verify that the
server behaves in the expected manner. We have measured
and will present data that demonstrates the effectiveness
of different metrics for coverage and different sentence gen-
eration algorithms. Our experiments here discovered some
omissions in the aws-ecs api documentation, validating our
approach.

5. SUMMARY
We have proposed and implemented a framework for con-
ducting modular verification of web services based on in-
terface grammars. We use interface grammars to specify
the interfaces of web services. Using our interface compiler,
these interface grammars are automatically converted to web
service stubs/drivers to enable modular verification. We ap-
plied these techniques to a client for the key interfaces of
the Amazon E-Commerce Service and also to the Amazon
E-Commerce Service server directly, and have demonstrated
that our approach is feasible and efficient.

6. REFERENCES
[1] G. Hughes and T. Bultan. Extended interface

grammars for automated stub generation. In
Proceedings of the Automated Formal Methods
Workshop (AFM 2007), 2007.

[2] G. Hughes and T. Bultan. Interface grammars for
modular software model checking. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA ’07), pages 39–49, 2007.

[3] Simple object access protocol (soap) 1.1. W3C Note 08,
http://www.w3.org/TR/SOAP/, May 2000.

[4] Web services description language (WSDL) 1.1.
http://www.w3.org/TR/wsdl.

30

Accelerating Stochastic Simulation Algorithm for
Chemically Reacting Systems on the Graphics Processing

Unit ∗

Hong Li
hongli@cs.ucsb.edu

Linda Petzold
petzold@cs.ucsb.edu

ABSTRACT
Traditional deterministic approaches for simulation of chem-
ically reacting systems fail to capture the randomness inher-
ent in such systems at scales common in intracellular bio-
chemical processes. The Stochastic Simulation Algorithm
(SSA) then has been proposed. Many realizations are re-
quired to capture accurate statistical information of the so-
lution. This carries a very high computational cost. The
current generation of graphics processing units (GPU) is
well-suited to this task. We have been accelerating the SSA
with the NVIDIA GeForce 8800 GTX and get about 200
times performance improvement which illustrates the power
of this technology for this important and challenging class
of problems.

1. INTRODUCTION
Although the traditional deterministic approaches are suf-
ficient for most systems, they fail to capture the natural
stochasticity in some biochemical systems formed by living
cells [2, 3], in which the small population of a few critical
reactant species can cause the behavior of the system to be
discrete and stochastic. The dynamics of those systems can
be simulated accurately using the stochastic simulation algo-
rithm (SSA) of Gillespie [2, 3]. For many realistic biochemi-
cal systems the computational cost of simulation by the SSA
can be very high. Often, the SSA is used to generate large
(typically ten thousand to a million) ensembles of stochas-
tic realizations to approximate probability density functions
of species populations or other output variables. Thus the
computation can become intractable. Here we introduce an
efficient parallelization of ensembles of SSA simulations for
chemically reacting systems on the low cost graphics pro-

∗This work was supported in part by the U.S. Department
of Energy under DOE award No. DE-FG02-04ER25621, by
the National Science Foundation under NSF awards CCF-
0428912, CTS-0205584, CCF-326576, and by the Institute
for Collaborative Biotechnologies through grant DAAD19-
03-D004 from the U.S. Army Research Office.

cessing unit (GPU) NVIDIA GeForce 8800GTX 1.

2. USINGTHEGRAPHICSPROCESSORUNIT
ASADATAPARALLELCOMPUTINGDE-
VICE

The Graphics Processing Unit (GPU) is a dedicated graph-
ics card for personal computers, workstations or video game
consoles. Recently, GPUs with parallel programming capac-
ities have become available. The GPU has a highly parallel
structure with high memory bandwidth and more transis-
tors devoted to data processing than to data caching and
flow control (compared with a CPU architecture)[1]. The
GPU architecture is most effective for problems that can
be implemented with stream processing and using limited
memory. Single Instruction Multiple Data (SIMD), which
involves a large number of totally independent records be-
ing processed by the same sequence of operations simulta-
neously, is an ideal general purpose graphics processing unit
(GPGPU) application.

The Compute Unified Device Architecture (CUDA) Soft-
ware Development Kit (SDK), supported by the NVIDIA
Geforce 8 Series, supplies general purpose functionality for
non-graphics applications to use the processors inside the
GPU. We have been worked on the NVIDIA 8800 GTX chip
which has 128 stream processors on a GeForce 8800 GTX
chip, divided into 16 clusters of multiprocessors as shown in
Figure 1 [1]. Each multiprocessor has 16 KB shared mem-
ory which brings data closer to the ALU. The processors
are clocked at 1.35 GHz with dual processing of scalar op-
erations supported. The maximum observed bandwidth be-
tween system and device memory is about 2GB/second.

3. PARALLELISMACROSSTHE SIMULA-
TIONS

Our focus is on computation of ensembles of SSA realiza-
tions. Ensembles of SSA runs for chemically reacting sys-
tems are very well-suited for implementation on the GPU
through the CUDA. The simulation code can be put into a
single kernel running in parallel on a large set of system stat
vectors X(t). The large set of final stat vectors X(tfinal)
will contain the desired results.

The initial conditions X(0) and the stoichiometric matrix ν

originally will be in the host memory. We must copy them
1At the time of this writing, the NVIDIA GeForce 8800GTX
costs about $200.

31

Figure 1: Hardware Model

to the device memory by CUDAMemcpy in the driver run-
ning on the the CPU. We minimize the transfer between
the host and device by using an intermediate data struc-
ture on the device and batch a few small transfers into a big
transfer to reduce the overhead for each transfer. Next, we
need to consider the relatively large global memory vs. the
limited-size shared memory. The global memory adjacent
to the GPU chip has higher latency and lower bandwidth
than the on-chip shared memory. It takes about 400-600
clock cycle latency to access the global memory vs. 4 clock
cycles to read or write the shared memory. To effectively
use the GPU, our simulation makes as much use of on-chip
shared memory as possible. We load X(0) and the stoi-
chiometric matrix ν from the device memory to the shared
memory at the very beginning of the kernel, process the data
(propensity calculation, state vector update, etc.) in shared
memory, and write the result back to the device memory at
the end. Because the same instruction sequence is executed
for each data set, there is a low requirement for flow con-
trol. This matches the GPU’s architecture. The instruction
sequence is performed on a large number of data sets which
do not need to swap out, hence the memory access latency
is negligible compared with the arithmetic calculation.

Given the total number of realizations of SSA to be simu-
lated, the number of threads per block and the number of
blocks must be carefully balanced to maximize the utiliza-
tion of computation resources. For stochastic simulation,
we can’t use too many threads per block since there is only
a limited shared memory and all system state vectors and
propensities have been put in shared memory for efficient
frequent access. Thus the number P of threads per block
should satisfy (N + M) ∗ 4 ∗ P + α < 16K, where N is the
number of chemical species, M is the number of reactions,
4 is the size (in bytes) of an integer/float variable, 16K is
the maximum shared memory we can use within one block,

and α is the shared memory used by the random number
generator (this is relatively small).

Statistical results can only be relied on if the independence
of the random number samples can be guaranteed. Thus
generating independent sequence of random numbers is one
of the important issues of implementing simulation for en-
sembles of stochastic simulation algorithms in parallel. We
chose the Mersenne Twister [5] from the literature in our ap-
plication [6]. This method has passed many statistical ran-
domness tests including the stringent Diehard tests [6]. The
fully tested MT random number generator can efficiently
generate high quality, long period random sequences with
high order of dimensional equidistribution. Another good
property of the MT is its efficient use of memory. Thus it is
very suitable for our application.

4. CONCLUSIONS
The SSA is the workhorse algorithm for discrete stochas-
tic simulation in systems biology. Even the most efficient
implementations of the SSA can be very time-consuming.
Often the SSA is used to generate ensembles (typically ten
thousand to a million) of stochastic simulations. The cur-
rent generation of GPUs appears to be very well-suited for
this purpose. On the two model problems we tested, we ob-
served speedups about 200 times for the GPU, over the time
to compute on the host workstation. With this impressive
performance improvement, in one day we can generate data
which would require more than six months of computation
with the sequential code. The details of the work can be
found in [4].

This technology is not quite ready for the novice user. Pro-
grams must be written to be memory efficient, with the GPU
architecture in mind. The computation is limited to single
precision, the API does not yet have all the features to take
full advantage of the architecture, transferring data to the
GPU is time consuming, the CPU and GPU cannot com-
pute simultaneously, and there are a number of problems
and limitations that NVIDIA is still working on.

5. REFERENCES
[1] N. Corporation. NVIDIA CUDA Compute Unified

Device Architecture Programming Guide.
http://developer.download.nvidia.com.

[2] D. Gillespie. A general method for numerically
simulating the stochastic time evolution of coupled
chemical reactions. J. Comp. Phys., 22:403–434, 1976.

[3] D. Gillespie. Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem., 81:2340–2361, 1977.

[4] H. Li and L. Petzold. Stochastic simulation of
biochemical systems on the graphics processing unit.
2007. Submitted.

[5] M. Matsumoto and T. Nishimura. Mersenne Twister: a
623-dimensionally equidistributed uniform
pseudo-random number generator . ACM Transactions
on Modeling and Computer Simulation (TOMACS),
8:3–30, 1998.

[6] N. F. members. NVIDIA forums.
http://forums.nvidia.com.

32

























        
        
         
        
       


   

     
  
         
         

      

         
     



 
  
      

        
      
       


 

         
        
       

       
       
          

     
 
         


         
     


 

      

         

      
         
       



        
        

























33


 










 











   























 
 
     
      
  


 


         

 
         







  





34

MeshMon: A Multi-tiered Framework for Wireless Mesh
Network Monitoring

Ramya Raghavendra, Prashanth A. K. Acharya, Elizabeth M. Belding, Kevin C. Almeroth
{ramya, acharya, ebelding, almeroth}@cs.ucsb.edu

Large scale IEEE 802.11 mesh networks promise to be
a significant method of providing Internet connectivity in
several cities and towns. In addition to these metro-scale
deployments, wireless mesh networks (WMN) have been
proposed to provide connectivity in rural environments, es-
pecially in developing countries around the world. Such
large scale mesh networks consist of hundreds to thousands
of mesh routers and may be used by thousands of users.
The presence of numerous wireless devices, including mesh
routers and client devices, in a single administrative domain
increases the complexity of the difficult task of managing
these large scale mesh networks.
We believe the network administrator’s ability to manage

and troubleshoot these networks in real-time is a critical fac-
tor that contributes to the success of WMNs. These adminis-
trative tasks, however, present several new challenges com-
pared to traditional wireline networks. In particular, the de-
sign of a network monitoring system is non-trivial because
of the multi-hop architecture of these mesh networks and
the inherent wireless-related properties of 802.11-based de-
vices. For instance, the performance of the devices in these
networks may be impacted by entities outside the network,
i.e. the surrounding environment or devices that are not part
of the network but share the frequency spectrum.
In addition, the large number of proprietary protocols and

algorithms used by different IEEE 802.11 client vendors and
the interaction among these clients is not well understood.
Unlike in WLANs, the backhaul links used for communica-
tion between mesh routers and the Internet Gateway consist
of relatively low bandwidth multi-hop wireless links. There-
fore, control traffic required for remote monitoring and ad-
ministration of these mesh routers must be minimal, so as
not to consume a significant portion of the available band-
width. The unreliable nature of wireless links may result in
gaps in the collected data, preventing the timely measure-
ment analysis. Finally, unlike wired networks, the physical
location of the mesh routers provides a strong spatial aspect
to all data used in management and troubleshooting of mesh
networks. Therefore, data from different routers that share
spectrum in a geographical region may need to be analyzed
in correlation with each other.
Although traditional infrastructure WLANs present simi-

lar monitoring challenges and requirements, network mon-

itoring solutions developed for WLANs cannot be directly
applied to WMNs. Most monitoring solutions for commer-
cial WLANs only use a small fixed subset of the large set
of available metrics to minimize the data collection and pro-
cessing overhead. This approach may fail to capture data
needed to diagnose a detected problem. Previous research
has shown that the diagnosis and root cause analysis of many
network faults requires a complete trace of the packets in the
network [1, 2]. Unfortunately, the capture and remote anal-
ysis of all data packets is infeasible in a mesh network as the
bandwidth requirements are prohibitive. Further, monitor-
ing systems that use a large set of metrics (or detailed packet
traces) require resource intensive computation and thus may
be unsuitable for real-time identification and remediation of
problems. From our own experience in the development of a
real-time network visualization tool, we found that the speed
of metric collection/generation, rather than visual rendering
of the data, is the computational bottleneck [3].
For the above reasons, there is a need for a methodol-

ogy of monitoring and metric collection in WMNs that is
bandwidth-efficient, scalable with respect to the number of
devices in the network, and able to provide a comprehensive
set of metrics that can be used to identify all problems in the
network. Such a solution would facilitate centralized admin-
istration of a large network and also enable the use of tools,
such as network visualization, to monitor the network health
in real-time.
In this paper, we present MeshMon, a network monitor-

ing framework that enables real-time identification and trou-
bleshooting of problems in WMNs. A key observation that
guides the design of MeshMon is that comprehensive met-
ric collection is required only when there are problems in
the network. A small subset of these metrics, called base-
line metrics, are sufficient when the network performance
is satisfactory, and can be used for coarse identification of
potential problems. We propose a stateful method that intel-
ligently adapts the metric collection process to capture the
most relevant set of metrics. When the baseline metrics in-
dicate the possible presence of a problem, the system tran-
sitions to collect a more detailed set of metrics. The goal of
this methodology of metric collection is to reduce the vol-
ume of data that needs to be collected and processed with-
out sacrificing the ability to diagnose problems in the net-

35

Trace CBR Replay
Faults Injected 30 30
Faults Detected 27 25
False Positives 8 10

Overhead Reduction 68% 64%

Table 1: Fault diagnosis performance of MeshMon.

work.
In this work we develop the idea dynamic and scalable hi-

erarchical metric collectionin the context of mesh networks.
Mesh networks offer additional complexity as compared to
WLANs because a monitoring system should address prob-
lems that affect mesh routers as well as those that affect
client devices. Therefore, MeshMon incorporates metrics
associated with mesh routing and connectivity into the hier-
archical metric collection, in addition to metrics associated
with client devices. Our design ensures that even in situa-
tions where a problem scenario is reflected in both sets of
metrics (mesh related and client access related), MeshMon
can successfully isolate the root cause of the problem.
The system is evaluated by injecting faults into the net-

work and comparing the number of faults detected with the
number injected.
A prototype of theMeshMon system has been implement-

ed on the UCSB Meshnet. The implementation involves
simple extensions to the madwifi driver as well as software
at the user level.
Evaluations are conducted with two types of traffic: a)

constant rate flows which we call the CBR traffic, and b)
traces from a large WLAN, which we call the Replay traf-
fic. In each of the scenarios, eight laptops act as clients con-
nected to the UCSB mesh network. In the first scenario, each
laptop sends CBR traffic at a constant rate of 1Mbps to the
gateway. In the second scenario, we use the WLAN traces
collected from the IETF 67 wireless network to extract link
layer data traffic patterns and use this information to replay
the traffic on the mesh testbed [4]. 1
Our general evaluation methodology is as follows. We in-

ject a set of faults into the system. The nodes run MeshMon
and attempt to diagnose the faults through increased met-
ric collection and send alerts to the central controller when
the fault is detected. We quantify the diagnosis accuracy by
comparing the inferred fault and its source with the original
fault we injected. We inject faults in both the client access
layer and the mesh layer.
Fault diagnosis accuracy and overhead reduction: The
complete set of results from the experiments is presented in
Table 1. Of the total 60 faults injected in the two scenarios,
52 were successfully detected by MeshMon. The average
reduction in overhead for the two scenarios was 66%. In
other words, MeshMon was able to detect a high percent-
age (86.6%) of faults using only one-third of the monitoring
1A detailed description of both scenarios is in a full version of this
extended abstract.

0 50 100 150 200 250

Node 1
Node 2
Node 3
Node 4

(b) Detected faults

0 50 100 150 200 250

Node 1
Node 2
Node 3
Node 4

Time (min)

(a) Injected faults

Figure 1: Time series of events (faults injected and faults
detected) at the mesh layer in a representative experi-
ment trial.

bandwidth as compared to the simple approach of using all
the available metrics. For our simple testbed setup with 15

nodes and a maximum of one client per mesh node, the sim-
ple monitoring approach collected about 400MB of moni-
toring data for a four hour period, while MeshMon required
about 134MB. This is an encouraging result that indicates
that MeshMon can scale better and can support larger mesh
networks.
The results in Table 1 indicate a high number of false pos-

itives and hence we further investigate this behavior. We
observe that for some injected faults, the central controller
receives alerts from multiple mesh routers. MeshMon cur-
rently does not have the capability of correlating alerts posted
by multiple mesh routers. Such a capability would enable
MeshMon to distinguish a fault that simultaneously impacts
the performance of multiple mesh routers and reduce the
misleading false positive rate.

1. REFERENCES
[1] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M.

Voelker, and S. Savage, “Jigsaw: Solving the Puzzle of
Enterprise 802.11 Analysis,” in Proc. of SIGCOMM, Pisa,
Italy, Sep. 2006.

[2] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benkö, J. Chiang,
A. C. Snoeren, S. Savage, and G. M. Voelker, “Automating
Cross-Layer Diagnosis of Enterprise Wireless Networks,” in
Proc. of SIGCOMM, Kyoto, Japan, Aug. 2007.

[3] A. Jardosh, P. Suwannatat, T. Hollerer, E. Belding, and
K. Almeroth, “SCUBA: Focus and Context for Real-time
Mesh Network Health Diagnosis,” in Proc. of PAM,
Cleveland, OH, Apr. 2008.

[4] R. Raghavendra, E. M. Belding, K. Papagiannaki, and K. C.
Almeroth, “Understanding Handoffs in Large IEEE 802.11
Wireless Networks,” in Proc. of IMC, San Diego, CA, Oct.
2007.

36

FreeMAC: Implementing a Multi-Channel TDMA MAC on
802.11 Hardware

Ashish Sharma, Elizabeth M. Belding
Department of Computer Science

University of California, Santa Barbara CA 93106
{asharma, ebelding}@cs.ucsb.edu

Modern wireless devices offer increased software control
over radio communication parameters. In the future, the
trend of making the hardware more programmable is ex-
pected to grow due to the emergence of cognitive and soft-
ware defined radio networking. Since a large portion of the
MAC protocol is implemented in software, with the firmware
providing a set of functional primitives, it is possible to de-
sign and implement alternate MAC protocols in real testbeds
equipped with commodity 802.11 devices [1, 2, 3]. Valida-
tion of protocols on real testbeds helps characterize the ad-
ditional system constraints that are difficult to capture in a
simulated environment. This work demonstrates FreeMAC
– a framework that enables the design and implementation of
a general class of multi-channelMAC protocols, with strict
timing requirements, on a typical Linux system.
Multi-channel MAC protocols aim to improve the capac-

ity of a wireless network by time-multiplexing the opera-
tion of nodes on orthogonal channels. Generally such pro-
tocols rely on precise time scheduling of channel switch op-
erations, usually every 20-80 ms to limit latency. TDMA
based MAC protocols require that packets are transmitted
during designated time slots. However, implementing such
MAC protocols on a Linux system using commodity 802.11
hardware involves several systems challenges. The focus
of the FreeMAC platform lies on enabling the primitives
for the deployment of such MAC protocols on existing sys-
tems. FreeMAC allows tight control over several radio pa-
rameters using API functions. We also propose a novel ap-
proach of programming the beacon interval to invoke peri-
odic hardware interrupts that can be used to bound the la-
tency in scheduling of time-sensitive MAC functions using
kernel timers.
We use the FreeMAC framework to implement a simple

proof of concept multi-channel TDMA based MAC on a
testbed of 4 laptops, each running kernel 2.6.15.7 on the
Ubuntu Linux distribution. Each laptop is equipped with
an AR5212 chipset-based LinkSys 802.11 a/b/g PCMCIA
card. We use the OpenHAL port of MadWiFi - an open
source driver for Atheros chipset-based commodity 802.11
wireless devices. In our testbed setup, as shown in Figure ,
we demonstrate the capability of the FreeMAC framework to
implement both single-channel (for nodes 2 and 3) as well as

multi-channel (for nodes 1 and 4) TDMA-style MAC proto-
cols. The TDMA schedule of our testbed comprises of four
50ms timeslots (the slot duration is reconfigurable), oper-
ating on two orthogonal channels. Each node transmits in
two of these slots and receives on the remaining two. We
eliminate per-packet acknowledgements and reduce the con-
tention period to a minimum to ensure a TDMA style MAC
implementation.

By exporting the programmability available at the radio
hardware as API functions, platforms like FreeMAC can pave
the way for increased cross layer interactions and efficient
network protocol designs. We plan to use the FreeMAC
platform to design and validate dynamic TDMA-style multi-
channel MAC protocols for deployment in rural mesh net-
works.

1. REFERENCES
[1] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and

D. Grunwald. SoftMAC - Flexible Wireless Research
Platform. In HotNets’05, College Park, Maryland,
USA, Nov 2005.

[2] A. Sharma and E. M. Belding. FreeMAC: Framework
for Multi-Channel MAC Development on 802.11
Hardware. In PRESTO’08, Seattle, WA, USA, Aug
2008.

[3] A. Sharma, M. Tiwari, and H. Zheng. MadMAC:
Building a Reconfigurable Radio Testbed Using
Commodity 802.11 Hardware. InWSDR ’06, Reston,
VA, USA, Sep 2006.

37

CoBRa: Content Based Ranking for Documents

Vishwakarma Singh∗

Dept. of Computer Science
University of California

Santa Barbara
vsingh@cs.ucsb.edu

Sayan Ranu
∗

Dept. of Computer Science
University of California

Santa Barbara
sayan@cs.ucsb.edu

ABSTRACT
We propose a new self learning model to rank a set of related
documents based on their content. We create a model for
each document and learn a parent model. All the documents
are ranked based on their similarity with the parent model.
We use this to re-rank top-k results generated by a search
engine for a key word. It dramatically improves the ranking
of content rich pages with a very small computation time of
10 ms.

1. MOTIVATION
Key Word based web search engines are already a billion
dollar industry. As the industry grows both in users and the
data, there is also a natural demand to improve the quality
of service. There has been a decade of research to improve
search quality without compromising on service time. Re-
search spans from improving key word search engines to de-
veloping context and natural language based search engines.

State of the art for the search engines is to rank pages by
an aggregate score of page rank and tf-idf. Some engines
like ASK exploit user clicks over a period a time to improve
the quality. Web Link network, user clicks and frequency
of the key word in web pages provide a good start to rank
the pages but are only partially effective since they don’t
consider the semantic of a page. Learning the semantic of
page from its content calls for complex algorithm which are
still far from yielding satisfactory results.

Demand for fast search restricts usage of complex algorithm
and processing of huge data online. Search algorithm based
on the content of a page will require a model that represents
its semantics and an efficient algorithm to rank the pages
based on the model. Given a good model, getting practi-
cal online time will be difficult as the number of web pages
containing a word ranges in thousands. An interesting ob-
servation from the web industry can be used to partially
incorporate content based ranking in the existing systems
and improve customer satisfaction. We observe that most
of the web users only click through top 4 or 5 results for a
key word. Therefore, it should be sufficient for most of the
practical purposes that we just rerank top-k results returned
by an existing search engine.

In this paper we develop a new model to capture semantics of
a page and a new learning technique (CoBRa) to re-rank the
top-k results returned by an existing search engine based on

∗Authors contributed equally to the work

content. Our experiments reveal that CoBRa dramatically
improves the rank of content rich pages with only a marginal
increase in the computation cost in the existing systems.
CoBRa is more suited to rank documents than web pages.

2. PAGE MODEL
Semantic of a page or a document better determines its re-
lationship to a given key word than just the occurrence of
the word in it. A web page semantically related to some
other subject may contain few occurrences of the key word
as helper. Therefore, there is a need of a framework to ef-
fectively and efficiently capture semantics. Existing search
engines store a single token (1-gram phrase) based histogram
of a page as its description. This histogram assumes total
independence between tokens and has no information of the
structure.

We extend the existing histogram model (H) by including n-
gram phrases which captures the semantics more powerfully
than 1-gram phrases. A classic example is data mining. data
and mining words can separately mean different things in
different context but their co-occurrence defines a subject
in the Computer Science. This extension not only fits the
state of the art but is also cost effective. n-gram phrases
are obtained using natural language processing packages like
NLTK [3]. Occurrence of phrases of size more than 3 are
rare. Therefore, we only include phrases of at most size 3
in a histogram. We do not consider different forms of the
same word. After extracting the phrases, we use Porter
Stemming algorithm [4] to extract the word stem and then
build a histogram (H). We normalize the frequency of each
phrase (t) by the total count of the phrase in the page.

p(t, H) =
frequency(t, H)∑

1≤i≤‖H‖ frequency(ti, H)
(1)

3. RANKING MODEL
In this section, we use the extended histogram (H) to develop
a new ranking method (CoBRa) that self learns a model
without any user input. Intuitively, we hypothesize that
all the web pages (page models) related to a subject are
derived from a parent model (M) that in someway captures
the characteristic of each page. If we use M to randomly
generate pages then the given set of web pages will be a
subset of this random population. An example is English
literature. Given an English language dictionary of n-gram
phrases and its Grammar, every piece of English literature
can be derived by some combination of these two entities.
Our page model is representative of such a dictionary.

38

We aggregate information from the page models (H) to con-
struct a weighted parent model (M). Parent model consists
of all the distinct stemmed phrases found in any page model.
Weight of a phrase in M is given by

w(t, M) = mt × σt (2)

mt =

∑
0<i<K p(t, Hi)

K
(3)

σt =

√∑
0<i<K(p(t, Hi)−mt)2

K − 1
(4)

This formulation gives high weight to the phrases which oc-
curs uniformly across all the web pages with high probabil-
ity. Phrases occurring with high probability in few pages or
with very low probability in all pages will be weighted less.

We rank the pages by its similarity to the parent model.
Parent model can be assumed to be an ideal page that best
describes the key word semantically. Therefore, the web
page having highest similarity to the parent model should
be considered best result for the query. We measure the sim-
ilarity as inverse of the distance between a page model (H)
and the parent model (M). There are sophisticated methods
in literature like EMD [5] and KL [2] divergence to measure
distance between two distributions but are computationally
intensive. Therefore, we use simple and efficient weighted
L1 distance between two models.

d(H, M) =
∑

1≤i≤‖H‖

‖wti − pti‖ (5)

dist(H, M) =
‖M‖
‖H‖ × d(H, M) (6)

score s =
1

dist(H, M)
(7)

Page with the highest score is ranked first.

4. IMPROVING COBRA
We improve the ranking methodology (CoBRa) by weighing
each phrase in the parent model by its score in the WORD-
NET [6] ontology. WORDNET scores a word against a
query word based on its distance from it on a prebuilt on-
tology. This helps to capture the similarity of phrase to the
query word and hence the semantic meaning. Let wst be the
score of a phrase from wordnet. Distance between H and M
is modified as

d(H, M) =
∑

1≤i≤‖H‖

‖wti − pti‖
wst

(8)

5. EXPERIMENTS
In this section we describe the experimental setup and give
qualitative result. We use the top 15 results of google for a
given key word to re-rank. We neither maintain a cache of
web pages in our server nor their phrase histogram. Solely
for the purpose of experimentation, we create page model at
run time by fetching web pages from their respective servers.
Histograms should be computed off line and stored for all
practical purpose. We give a diagrammatic representation
of the steps involved in the page model preparation in Figure
1. One of the major challenges is to extract only meaningful
text from the pages. A web page contains query related text,

Figure 1: Steps for preparing Page Model

menus, ads, links, scripts, style sheets and images. Though
menus, ads, link titles and image captions can provide im-
portant context sensitive information but in this paper we
limit ourselves with only alphabetic text in a page. Once
we have the page model for the top 15 pages, we execute
CoBRa to rerank them.

Time analysis: COBRA gives an amazing performance
to re-rank top-15 pages by content. On an average it takes
10ms to rerank the pages. A key word search takes time be-
tween few milliseconds to seconds. We can see that CoBRa
adds delta cost to the existing search cost and can be easily
integrated with these systems.

Qualitative Analysis: Quality is subjective to human need
and thinking. Same page can be rated differently by differ-
ent people for the same key word. So, there is no standard
way to quantify page rankings. To validate our claim we
present a pilot implementation at our server [1]. We also
provide a collection of comparative results for some hand
picked key words from various fields. Standard practice is
to open the service to beta users and collect their feedback
on the quality. Given the resource constraints, currently we
are not able to pursue this methodology.

6. CONCLUSION
We develop an efficient methodology to rerank top-k results
of a search engine by content. It requires minimal changes
to the already existing techniques and costs an average time
of 10 ms. It gives a remarkable improvement in the rank of
the content rich pages.

7. REFERENCES
[1] http://128.111.44.206/cobra/.
[2] S. Kullback and R. A. Leibler. On information and

sufficiency. Annals of Mathematical Statistics, pages
79–86, 1951.

[3] http://nltk.org/index.php/Main Page.
[4] http://tartarus.org/ martin/PorterStemmer/.
[5] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for

distributions with applications to image databases.
ICCV, pages 59–66, 1998.

[6] http://wordnet.princeton.edu/.

39

Depth Compositing for Augmented Reality

Jonathan Ventura
Department of Computer Science

University of California, Santa Barbara
jventura@cs.ucsb.edu

Tobias Höllerer
Department of Computer Science

University of California, Santa Barbara
holl@cs.ucsb.edu

1. INTRODUCTION
Correct handling of occlusion is a significant challenge when
compositing real and virtual content, whether it be for aug-
mented reality or film. For film, the solution is often solved
offline by arduously creating alpha mattes by hand. In the
augmented reality context, the compositing must be real-
time, so offline solutions are not possible. Occlusions are
usually disregarded in augmented reality, so that virtual ob-
jects are always rendered on top of physical objects. If a
highly accurate 3D model of the scene is available, then
depth compositing can be performed automatically; how-
ever, such models can be difficult to create, and limit the
range of the system to the extent of the model.

We have developed a method for automatic depth composit-
ing which uses a stereo camera, without assuming static
camera pose or constant illumination. The traditional ap-
proach to automatic depth compositing with a stereo camera
uses the normal SAD block matching algorithm, and copies
the disparity map into the z-buffer [7, 5]. These approaches
result in disparity maps which have noise in texture-less re-
gions and/or at edge boundaries. Berger’s work [1] uses
snakes to find the outlines of occluded objects. However,
this approach has not been proven to be real-time or suffi-
ciently robust.

Kolmogorov et al. describe the Layered Graph Cut algo-
rithm to fuse color and stereo likelihood for binary segmen-
tation [3]. They learn color and depth distributions for fore-
ground and background from hand–labelled data, and then
use these distributions in a graph cut which encourages con-
sistent labeling within smooth regions. In our work we ex-
tend the Layered Graph Cut to general depth compositing
by decoupling the color and depth distributions, so that the
depth distribution is determined by the disparity map of the
virtual scene to be composited in.

2. OUR APPROACH
The central assumption behind our approach is that the
scene consists of distinct foreground and background which
can be segmented using color and contrast cues alone. Only
foreground objects may occlude virtual objects. Color seg-
mentation is first used to separate foreground and back-
ground. Then, the depth distribution is used to determine
visibility of foreground objects (or conversely, occlusion by
virtual objects).

In our experiments, we determine a depth probability distri-

Figure 1: Depth compositing example (left to right,
top to bottom): left and right stereo pair; disparity
map and color segmentation; compositing based on
disparity alone; compositing with graph cut.

bution for the real image by stereo analysis. The color seg-
mentation is initialized by manual labeling of a single frame
in the compositing sequence, and modeled using histograms.
However, it is important to note that this compositing algo-
rithm is independent of the particular methods used to ac-
quire depth and perform color segmentation. Other possible
methods for depth acquisition include time-of-flight sensing
[2], coded aperture [4], or structured light [8]. Many more
sophisticated approaches for color segmentation exist, such
as background subtraction or adaptive mixture models [6].

3. METHOD
Ultimately, we wish to label each pixel as either background,
visible foreground, or occluded foreground. The composit-
ing algorithm consists of two steps. First, we use a color-
based graph cut to separate foreground from background.
Second, we use a depth-based graph cut to separate visible
foreground pixels from those occluded by the virtual object.

The energy E to be minimized by the graph cut is defined
as:

E(z;x : Θ) = U(z;x : Θ) + V (z;x) (1)

40

Figure 2: Partial occlusion (left) and full occlusion
(right).

where z contains the color pixels in the left image, x is the
labeling, and V is the usual contrast term [3]. For color
segmentation, Θ contains the color distribution parameters
and U is the color likelihood. For depth segmentation, Θ
contains the match likelihoods (for all disparities) between
the left and right image, and U aggregates the corresponding
visibility likelihood.

Figure 3 gives an example of the compositing process. The
top left image shows the color-based segmentation into fore-
ground and background. The stereo pair is then analyzed
to determine a probability distribution over the disparity
space for each pixel; the top right image gives the maximum
likelihood disparity map. A second graph cut determines
visibility of foreground pixels based on the stereo analysis,
shown bottom left. Finally, the real and virtual content is
combined in the bottom right image.

4. RESULTS AND EVALUATION
We take as our example an augmented reality scenario where
the user is interacting with virtual content using his/her
hands. The hands are the foreground objects, and the rest
of the scene is the background. The color distributions were
modeled using two-dimensional histograms. (We use the Cb
and Cr channels of YCbCr color space, which is convenient
for skin segmentation because skin does not contain much
green.) The logo is composited in at constant depth.

As Figure 1 shows, the graph cut achieves a clean composite
of a hand with a virtual object, as opposed to the composite
using a stereo depth map, which contains significant noise.
We improve over solely using the stereo map in two ways:
first, we use color segmentation to avoid putting background
in front of the virtual content; and second, we use a bound-
ary term which reduces noisy labeling in smooth regions
such as the textureless areas of the hand. This composition
technique enables bare hand interaction with virtual content
with correct visual occlusion.

Figures 2 and 3 give examples of both partial occlusion us-
ing this compositing algorithm. With color segmentation
alone, we have no information about visibility of foreground
pixels. By using depth cues, however, the algorithm can ac-
curately determine visibility. These results show that our
algorithm can successfully handle all types of occlusions (in-
cluding partial occlusions) by fusing color and depth.

Performance is two frames per second on a 2 Ghz machine.
An easy speedup is possible by parallelizing the stereo analy-
sis. The stereo likelihoods can be computed at each disparity
independently. This suggests performance gains either using
multiple CPUs or a GPU implementation.

Figure 3: Depth compositing example with stan-
dard Tsukuba stereo pair (left to right, top to bot-
tom): foreground / background segmentation based
on color; maximum likelihood disparity map; vis-
ibility segmentation based on disparity likelihood;
compositing result.

Acknowledgments
This work was supported by the NSF IGERT program in
Interactive Digital Multimedia, NSF Grant No. 0221713.

5. REFERENCES
[1] M. O. Berger. Resolving occlusion in augmented

reality: a contour based approach without 3d
reconstruction. In CVPR ’97: Proceedings of IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 1997.

[2] R. Gvili, A. Kaplan, E. Ofek, and G. Yahav. Depth
keying. In Stereoscopic Displays and Virtual Reality
Systems X. SPIE, 2003.

[3] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Rother. Bi-layer segmentation of binocular stereo
video. In CVPR ’05: Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 2005.

[4] A. Levin, R. Fergus, F. Durand, and W. T. Freeman.
Image and depth from a conventional camera with a
coded aperture. In Proceedings of ACM SIGGRAPH
2007, 2007.

[5] J. Schmidt, H. Niemann, and S. Vogt. Dense disparity
maps in real-time with an application to augmented
reality. In WACV ’02: Proceedings of the Sixth IEEE
Workshop on Applications of Computer Vision, 2002.

[6] C. Stauffer and W. Grimson. Adaptive background
mixure models for real-time tracking. In CVPR ’97:
Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition, 1998.

[7] M. M. Wloka and B. G. Anderson. Resolving occlusion
in augmented reality. In SI3D ’95: Proceedings of the
1995 Symposium on Interactive 3D graphics, 1995.

[8] L. Zhang, B. Curless, and S. M. Seitz. Spacetime
stereo: Shape recovery for dynamic scenes. In CVPR
’03: Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2003.

41

Strategy-Proof Wireless Spectrum Auctions

Xia Zhou, Sorabh Gandhi, Subhash Suri, and Haitao Zheng
Department of Computer Science

University of California, Santa Barbara
{xiazhou, sorabh, suri, htzheng}@cs.ucsb.edu

1. INTRODUCTION
An increasing number of users, homes and enterprises rely on
wireless technology for their daily activities. However, the
growth of wireless networks has been fundamentally limited
by the inefficient distribution of radio spectrum. Historical
static allocations have led to an artificial shortage of spec-
trum. This misallocation has prompted a wide-spread in-
terest in an open, market-based approach for redistributing
the spectrum where new users can gain access to the spec-
trum they desperately need and existing owners can gain a
financial incentive to “lease” their idle spectrum.

Auctions are among the best-known market-based allocation
mechanisms due to their perceived fairness and allocation ef-
ficiency. In this work, we consider a dynamic spectrum auc-
tion system akin to the eBay marketplace that serves and
scales to many small players without manual mediation. In
this marketplace, wireless nodes request spectrum in their
local neighborhood in short-terms. These small players re-
quest spectrum based on present demand and pay for what
they really need without burdensome up-front investment in
the FCC-style auctions.

One critical requirement to initiate the proposed market-
place is to ensure that auctions are quickly conducted to
enable on-demand short-term spectrum redistribution. To
address this challenge, we propose VERITAS, a truthful (or
strategy-proof) and efficient spectrum auction. A truthful
auction guarantees that if a bidder bids the true evaluation
of the resource, its utility will not be less than that when it
lies. In this extended abstract, we outline the basic idea of
VERITAS design. A more comprehensive description and
rigorous study can be found in [2].

2. CHALLENGES OF TRUTHFUL AND EF-
FICIENT SPECTRUM AUCTION DESIGN

In this section, we describe the problem of truthful auction
design, and its challenges in spectrum auctions.

2.1 Problem Definition
We consider a collusion-free spectrum auction setting, where
one auctioneer auctions k channels to n bidders. We assume
that the channels have uniform characteristics and values,
so that bidders request spectrum by submitting the number
of channels they demand and the per-channel prices they
would like to pay. To make the problem tractable, we repre-
sent the conflict condition among bidders by a conflict graph
– two bidders either interfere with each other and cannot use

the same channels, or can reuse the same channels simulta-
neously.

Let us first introduce some notations and then give the prob-
lem definition of truthful spectrum auction.

bi – The per-channel bid submitted by bidder i.
vi – i’s per-channel valuation describing the true price i is
willing to pay for each channel.
pi – The clearing price charged for each winner i.

ui – i’s utility as the residual worth of the channels. That
is, ui = vi ·da

i - pi if i obtains da
i channels, and 0 if it obtains

none.

Definition 1. A truthful auction is one in which no bid-
der i can obtain higher utility ui by setting bi != vi.

Definition 2. An efficient and a truthful spectrum auc-
tion is one which is truthful and maximizes the efficiency of
spectrum usage subject to the interference constraints.

2.2 Challenges in Spectrum Auctions
Given the above definitions, we now describe the two unique
properties that set spectrum auctions fundamentally differ-
ent from (and much more difficult than) conventional multi-
unit auctions. First, spectrum can be spatially reused con-
currently – two conflicting bidders must not use the same
channels simultaneously yet well-separated bidders can. While
a conventional auction with n bidders and k channels can
only have at most k winners, spectrum auction can have
more than k winners. Let’s consider a simple example of
n = 3 bidders competing for k = 2 channels, each request-
ing 1 channel. Figure 1(left) plots the conflict graph, where
each vertex represents a bidder and two vertices share an
edge if they conflict. A conventional auction will sell chan-
nels to at most 2 bidders, while an efficient spectrum auc-
tion can assign channels to all 3 bidders. Second, the con-
flict constraints among bidders are in general heterogenous,
making the problem of optimizing spectrum allocation NP-
complete [1] even when each bidder requests one channel.

In [2], we show that these unique properties of spectrum
allocation bring significant challenges into truthful and ef-
ficient spectrum auction designs. Existing truthful designs
in conventional auctions, such as secondary pricing auctions
and VCG-style auctions, either fail to be truthful, require
exponential computational complexity, or significantly de-
grade spectrum utilization when applied to spectrum auc-
tions. Thus we need new designs for truthful and efficient
spectrum auctions.

42

     

Figure 1: An illustrative example on spectrum allo-
cations. (Left) The conflict graph of a network with
3 bidders. (Right) The optimal spectrum allocation
when there are 2 channels.

3. VERITAS AUCTION DESIGN
Motivated by the observations from Section 2, we propose
VERITAS, a truthful and computational-efficient spectrum
auction design that also utilizes spectrum efficiently. VER-
ITAS consists of a greedy spectrum allocation algorithm
to distribute channels among bidders and a pricing mech-
anism to charge winning bidders. By strategically designing
the greedy allocation algorithm, VERITAS achieves similar
spectrum utilization/efficiency as the well-known spectrum
allocation algorithms in polynomial time. By designing the
pricing mechanism to charge bidders by their critical values,
VERITAS enforces auction truthfulness despite the complex
heterogeneous interference constraints.

We design VERITAS to support a diverse form of spectrum
requests. In this section, we introduce VERITAS’s main
algorithm with strict requests, where bidder i requests spec-
trum by di channels and only accepts either 0 or di channels.

3.1 Main Algorithm
VERITAS–Allocation Based on the sorted bid set, VER-
ITAS allocates channels from the highest bidder to the low-
est bidder. For each bidder i, the allocation algorithm will
allocate i channels if there are enough channels to satisfy i.

VERITAS–Pricing VERITAS charges each winning bid-
der based on the bid of its critical neighbor.

Definition 3. Given a set of bids, a critical neighbor
C(i) of bidder i is a i’s conflicting neighbor where if i bids
lower than C(i), i would not win, and if i bids higher than
C(i), i would win in the auction.

3.2 VERITAS’s Truthfulness
We prove VERITAS’s truthfulness by three steps: (1) We
prove that VERITAS’s allocation is monotonic – given other
bidders’ bids, if a bidder is allocated by bidding b, then it
will also be allocated by bidding higher than b. (2) We show
that for each bidder, there exists a critical value such that
the bidder wins by bidding higher than this value and loses
by bidding lower. (3) We show that by charging winners
based on their respective critical values, no bidder can obtain
higher utility by bidding other than its true value. Proof
details can be found in [2].

3.3 VERITAS’s Complexity
Theorem 1. VERITAS runs in time O(n log n+nk|E|),

where |E| is the number of edges in the conflict graph G, n
is the number of bidders, and k is the number of channels
auctioned. Because |E| ≤ n(n−1)

2 , VERITAS runs in time
less than O(n3k).

In [2], we also show that VERITAS can be easily extended
to other bidding formats: (i) range requests where bidder i
requests di channels but expects to receive any number of
channels between 0 and di; (ii) contiguous requests where
the channels in strict requests or range requests assigned to
i must be contiguously aligned.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 2 4 6 8 10 12 14 16 18 20

Re
ve

nu
e

Number of auctioned channels

300 bidders
200 bidders
100 bidders

(a) Untruthful auction

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

Re
ve

nu
e

Number of auctioned channels

300 bidders
200 bidders
100 bidders

(b) Truthful auction

Figure 2: Comparing VERITAS to untruthful rev-
enue maximizing spectrum auction in revenue.

4. EXPERIMENTAL RESULTS
We perform experiments to explore the property of truthful
auctions by comparing VERITAS to a revenue-maximizing
yet non-truthful auction. Note that this comparison is unfair
because bidders in non-truthful auctions have no incentives
to bid their true values. Nevertheless, we plot both results
based on the same set of bids to compare the trends. We
apply a distance-based interference model to produce the
conflict graph. Assume bidders are in a square 1×1 area,
and each requests one channel. Each bidder’s true evaluation
(and hence its bid) is uniformly distributed over (0, 1].

As can be seen in Figure 2, untruthful and truthful auc-
tions behave differently in terms of revenue as the number
of channels increases. The revenue of the non-truthful auc-
tion increases and then levels off as the number of channels
auctioned increases, while the revenue of VERITAS starts
to drop beyond a certain number of channels.

This significant difference comes from the fact that the two
auctions have fundamentally different charging mechanisms:
the non-truthful auction charges winners by their actual bids
while the truthful auction VERITAS charges winners by the
bids of their critical neighbors. In the non-truthful auction,
the increase of channels also increases the number of win-
ners, and hence the revenue which is the sum of winners’
bids. In VERITAS, although the number of winners in-
creases, the charges to individual winners decrease as the
pool of losing bidders shrinks.

Motivated by this interesting phenomenon, we propose to let
the auctioneer determine the number of channels auctioned
to maximize its revenue. In [2] we discussed analytically
how to choose the number of channels to auction given the
information of conflict graph and bid distribution.

5. REFERENCES
[1] Jain, K., Padhye, J., Padmanabhan, V. N., and Qiu, L. Impact of

interference on multi-hop wireless network performance. In
Proceedings of MOBICOM (2003).

[2] Zhou, X., Gandhi, S., Suri, S., and Zheng, H. ebay in the sky:
Strategy-proof wireless spectrum auctions. In Proceedings of
MOBICOM (2008).

43

http://gswc.cs.ucsb.edu/

