

GSWC 2010

Proceedings of

The Fifth Annual Graduate

Student Workshop on Computing

October 8th, 2010
Santa Barbara, California

Department of Computer Science
University of California, Santa Barbara

http://www.cs.ucsb.edu

Organized By

Bryce Boe, Chair
Lara Deek, Vice-Chair

Wei Tang, ECE Co-Coordinator
Jennifer Chen, ECE Co-Coordinator

Mike Wittie, Proceedings Coordinator
Nichole Stockman, General Committee
Petko Bogdanov, General Committee

Ceren Budak, General Committee
Sudipto Das, General Committee

Aaron Elmore, General Committee
Luca Foschini, General Committee
Bita Mazloom, General Committee

Gianluca Stringhini, General Committee
Jonathan Ventura, General Committee
Christo Wilson, General Committee

Fred Chong, Faculty Adviser

Thanks to

Platinum Supporters

Gold Supporters

Keynote Speakers

Tajana Šimunić Rosing, Assistant Professor, UCSD

Tajana Šimunić Rosing is currently an Assistant Professor in Computer Science
Department at UCSD. Her research interests are energy efficient computing,
embedded and wireless systems. Tajana’s work on event driven dynamic power
management laid the mathematical foundations for the engineering problem, devised a
globally optimal solution and more importantly defined the framework for future
researchers to approach these kinds of problems in embedded system design. Her
recent results demonstrate the importance of joint power and thermal management in
multicore server systems in order to minimize the overall energy cost. Furthermore,
she developed a novel class of proactive thermal management policies that can lower
the incidence of hot spots in multicore processors by up to 60% with no performance
impact. Her current work is focused on developing energy efficient scheduling
policies for virtualized server environments and on energy efficiency in population
area healthcare networks. From 1998 until 2005 she was a full time research scientist
at HP Labs while also leading research efforts at Stanford University. She finished her
PhD in EE in 2001 at Stanford, concurrently with finishing her Masters in Engineering
Management. Her PhD topic was dynamic management of power consumption. Prior
to pursuing the PhD, she worked as a senior design engineer at Altera Corporation.
She obtained the MS in EE from University of Arizona. Her MS thesis topic was high-
speed interconnect and driver-receiver circuit design. She has served at a number of
Technical Paper Committees, and is currently an Associate Editor of IEEE
Transactions on Mobile Computing. In the past she has been an Associate Editor of
IEEE Transactions on Circuits and Systems.

Úlfar Erlingsson, Security Research Manager, Google

Úlfar Erlingsson leads security research efforts within Google Research. Previously,
he has been a researcher at Microsoft Research, an Associate Professor at Reykjavik
University, Iceland, and led security technology at two startups: GreenBorder and
deCODE Genetics. He holds a PhD in CS from Cornell.

Discussion Panel

Lingli Zhang, Software Engineer, Microsoft
Dr. Lingli Zhang is currently a Software Engineer at Microsoft, Technical Computing
Group. Her research interests include programming language and compiler, virtual
execution environment and programming support for parallel computing. Her last
significant endeavor was contributing to the Microsoft STM.net release, a software
transactional memory implementation on .NET. She currently works on a new
research incubation project on parallel programming support in C++. Dr. Zhang
received her M.S. from Zhejiang University, China, and her Ph.D. in computer science
from University of California, Santa Barbara. Her dissertation is about "exploiting
adaptation in a Java Virtual Machine to enable both programmer productivity and
performance for heterogeneous devices". She has published a series of papers on code
memory management and supporting Futures in Java Virtual Machine runtime.

Joe Alfaro, Sr. Director of Engineering, Citrix Online
Joe Alfaro is Sr. Director of Engineering at Citrix Online. He is responsible for the
engineering teams that produce all COL products including GotoMyPC, GotoAssist,
GotoMeeting, GotoWebinar, GotoTraining and GotoManage. Prior to this Joe was the
VP of Engineering for Velosel Corporation, a SaaS supply chain management
company. Prior to that Joe was VP of Product development for Interbase Software
Corporation which produced relational database software. Before that, Joe held a
variety of technical and management positions at Symantec, Borland, Apple and a
number of small startups.

Jon Walker, CTO, AppFolio
Jon is a serial entrepreneur and is working on his third successful startup, AppFolio,
with former UCSB professor and founder of Citrix Online, Klaus Schauser. AppFolio
is the new generation of Software as a Service company. Prior to AppFolio, Jon has
been the CTO of two successful startups. The first was Miramar Systems. During his
tenure, he led the development and quality assurance organization team and was
responsible for the creation and delivery of products. The software developed under
his direction has been deployed to over 20 million computers worldwide. Miramar
was sold to Computer Associates in 2004. The second was Versora, which provides
open source Systems Management software. Versora was sold to Kaseya in 2006. Jon
has also been a senior technologist for Nortel Networks and Xing Technology Inc.
(sold to Real Networks), a Contributing Editor to LinuxWorld Magazine and he is the
inventor of multiple patents. Jon also teaches Software Engineering as an adjunct
professor at Westmont College in the Computer Science department.

Table of Contents

Multifarious Session A led by Nichole Stockman

• Eliminating Timing and Termination Leaks 1
Vineeth Kashyap, Ben Hardekopf, Ben Wiedermann

• Efficient and Scene-Adaptive Capture of Focal Stacks 3
Daniel Vaquero, Matthew Turk, Natasha Gelfand, Marius Tico, Kari Pulli

Architecture Session led by Bita Mazloom

• A Case for Smartphone Reuse to Augment Elementary
School Education 5
Xun Li, Pablo J. Ortiz, Jeffrey Browne, Diana Franklin, John Y. Oliver,
Roland Geyer, Yuanyuan Zhou, Frederic T. Chong

• Fighting Fire with Fire: Superlattice Cooling of Silicon
Hotspots to Reduce Global Cooling Requirements 7
Susmit Biswas, Mohit Tiwari, Timothy Sherwood, Luke Theogarajan,
Frederic T. Chong

• Information Flow Secure Architectures 9
Mohit Tivari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong,
Timothy Sherwood

Multifarious Session B led by Lara Deek

• Internet usage patterns in a rural wireless network in
Macha, Zambia 11
David L. Johnson, Elizabeth M. Belding, Kevin Almeroth, Gerjan van Stam

• Fast Nearest Neighbors in Large Networks 13
Petko Bogdanov, Ambuj K. Singh

• Connectors, Mavens, Salesmen and Translators of
the Blogosphere 15
Ceren Budak, Divyakant Agrawal, Amr El Abbadi

Security Session led by Gianluca Stringhini

• Are BGP Routers Open To Attack? An Experiment 17
Ludovico Cavedon, Christopher Kruegel, Giovanni Vigna

• Hacking for Fun and Education: Organizing the UCSB iCTF 19
Bryce Boe, Nicholas Childers, Giovanni Vigna

• Dymo: Linking Network Traffic to Application Code 21
Bob Gilbert, Richard Kemmerer, Christopher Kruegel, Giovanni Vigna

Posters

• Quantifying the Environmental Advantages of Large-Scale
Computing 23
Vlasia Anagnostopoulou, Heba Saadeldeen, Frederic T. Chong

• A Framework for Sketch-Based Interface Development 25
Jeffrey Browne

• Active Cloud DB: A RESTful Software-as-a-Service for
Language Agnostic Access to Distributed Datastores 27
Chris Bunch, Jonathan Kupferman, Chandra Krintz

• Channel Management for 802.11n Wireless Deployments 29
Lara B. Deek, Kevin C. Almeroth, Elizabeth Belding

• Identifying Communities with Coherent and Opposing Views 31
Nicholas Larusso, Petko Bogdanov and Ambuj Singh

• A Study on VLSI On-line Stability Detectors 33
Chris Lee, John Oliver

• Secure Information Flow Analysis for Hardware Design:
Using the Right Abstraction for the Job 35
Xun Li, Mohit Tiwari, Ben Hardekopf, Timothy Sherwood, Frederic T. Chong

• Overhead Reduction for a Gate Level Information Flow
Tracking Processor 37
Van L. Nguyen, John Y. Oliver

• Analyzing Ruby on Rails Data Models using Alloy 39
Jaideep Nijjar, Tevfik Bultan

• Inferring File Structure from Disk I/O Traffic 41
Hunter Olson, John Oliver

• A Study on Social Network Spam 43
Gianluca Stringhini, Christopher Kruegel, Giovanni Vigna

• Characterizing the Potential of Chip-Scale Plasmonic
Interconnects 45
Hassan M. G. Wassel, Mohit Tiwari, Luke Theogarajan, Fred T. Chong,
Tim Sherwood

• Detection of Botnet C&C Communication Using Potential
Signature Extraction 47
Ali Zand, Christopher Kruegel, Giovanni Vigna, Xifeng Yan

• Towards efficient medium access for 60GHz networks 49
Mariya Zheleva, Ashish Sharma, Sumit Singh, Elizabeth Belding,
Upamanyu Madhow

Eliminating Timing and Termination Leaks
Vineeth Kashyap, Ben Hardekopf
Department of Computer Science

University of California, Santa Barbara
{benh, vineeth}@cs.ucsb.edu

Ben Wiedermann
Department of Computer Sciences

University of Texas at Austin
ben@cs.utexas.edu

Abstract—Secure information flow is an important property
for guaranteeing the privacy and integrity of information. Most
programming languages that enforce secure information flow
prevent explicit and implicit leaks that arise from data and control
dependencies. However, leaks that arise from covert channels
such as timing and termination can expose an arbitrary amount
of information and are difficult to prevent at the programming-
language level. Prior efforts to address such covert channels do
so by severely restricting the expressiveness of the language, such
as forbidding branches or loops whose conditions rely on secret
information.

In this paper, we outline programming language mechanisms
that, given a program without any implicit or explicit leaks,
transform the program into a version that also contains no
timing or termination leaks. The technique is based on slicing
the program into a number of sub-programs, one per security
level, and scheduling the sub-programs in a manner guaranteed
to eliminate illegal flows. Our technique is able to make stronger
security guarantees than any existing language-based technique,
and unlike existing work it does so without imposing additional
restrictions on the language.

I. INTRODUCTION

Secure information flow guarantees the privacy and integrity
of data, thereby prohibiting an attacker from learning secret
information (privacy) or injecting untrusted information (in-
tegrity). For example, a financial application might have access
to a user’s private financial data as well as the ability to send
messages over the network to access public financial data
such as stock quotes. This level of access is necessary for the
application to function—it cannot be denied either resource.
However, the user would like some guarantee that a malicious
application cannot use its network access to make the user’s
private information public.

A common guarantee that secure information flow can
provide is called noninterference. This guarantee states that
the behavior of publicly observable events (e.g., messages sent
over a network) cannot be influenced by private data (e.g.,
a user’s private information). The task of secure information
flow is to identify information channels—mechanisms that are
able to transmit information—and prohibit leaks (information
flows along those channels that violate noninterference).

The most prevalent information channels addressed by ex-
isting work are explicit and implicit channels, corresponding
to data and control dependencies in a program. However,
the most difficult types of information channels to control
are covert channels; these channels are not intended by their
nature to transmit information, but they can be subverted

for this task. This paper is concerned with two types of
covert channels called timing and termination channels. These
channels attempt to leak information by modifying the timing
or termination behavior of a program based on secret informa-
tion; an attacker who is able to observe this behavior can then
deduce something about the values of the secret data. Timing
and termination channels have been used in practical attacks
against privacy (e.g., in web applications [2]) and are able to
leak an arbitrary amount of information.

In this paper we improve on the state of the art by contribut-
ing a novel program transformation capable of completely
eliminating timing and termination leaks from a program that
has no explicit and implicit flows. Our key insights are that: (1)
if a program exhibits no illegal explicit or implicit flows then
the computations at the various security levels are essentially
independent of one another; (2) such a program can safely be
decomposed into a set of independent sub-programs; and (3)
these sub-programs can then be scheduled to execute in a way
that prohibits timing and termination leaks.

Whereas previous techniques remove timing and termina-
tion leaks by imposing severe restrictions on the programming
language—for example by forbidding branches or loops whose
conditions rely on secret information—our technique makes
stronger security guarantees than any existing language-based
technique, without imposing additional restrictions on the
language.

II. SECURITY MODELS AND NONINTERFERENCE

The information flow policy of a program is defined using
a lattice (L,v) where L is a set of security classes and v is a
partial order indicating relative secrecy among those classes.
The terms “high information” and “low information” indicate
relative position in the lattice, high being “more secret”.

Our definition of secure information flow uses the notion
of noninterference, which states that values of variables at a
given security level ` ∈ L can only influence the values of
variables at any security level that is lower than or equal to
` in the security lattice. Based on the definition of influence,
various security models can be derived.

The simplest definition of influence considers only values of
variables: a program is noninterfering if changing the values
of variables at level `′ 6v ` cannot affect the values of variables
at level ` either directly via data dependencies (called explicit
channels) or indirectly via control dependencies (called im-
plicit channels). More sophisticated definitions of influence

1

also account for timing channels (the ability of values at level
`′ to affect when the values at level ` are computed) and
termination channels (the ability of values at level `′ to affect
whether the values at level ` are computed, via nontermination
or abnormal termination). Both timing and termination aspects
of the security model have a dimension of sensitivity, which
describe the assumptions that the model makes about the
attacker’s strength.

The three security models with regard to timing are: (a)
timing-insensitive model (TIME-I) which assumes that an
attacker has no means to time program execution (b) weakly
timing-sensitive model (TIME-WS) which assumes time is
incremented by a fixed, constant amount at each program step
(c) strongly timing-sensitive model (TIME-SS) which assumes
that an attacker is able to time program execution using “wall-
clock” time and thus accounts for architectural features such
as caches and branch predictors.

The three security models with regard to termination are: (a)
termination-insensitive security model (TERM-I) which makes
security guarantees under the assumption that a program
terminates normally (b) weakly termination-sensitive model
(TERM-WS) which assumes attacker can observe termination
but ignores abnormal termination (c) strongly termination-
sensitive model (TERM-SS) which acknowledges the possibil-
ities of both non-termination and abnormal termination.

Using these descriptions we can distinguish three types
of noninterference properties: (a) Insensitive noninterfer-
ence: 〈TIME-I, TERM-I〉 (b) Weakly-sensitive noninterference:
〈TIME-WS, TERM-WS〉 (c) Strongly-sensitive noninterference:
〈TIME-SS, TERM-SS〉.

In several related previous work [1], type systems have
been proposed that guarantee insensitive noninterference. In
the next two sections, we outline a mechanism that takes an
insensitively noninterfering sequential program and transforms
it to remove timing and termination leaks. The degree of
sensitivity exhibited by the transformed program is a function
of that program’s security lattice.

III. SKETCH OF SECURITY TRANSFORMATION

The concept behind the security transformation is to stat-
ically slice an insensitively noninterfering program with n
security levels into n separate sub-programs, each of which
computes the values at its own security level. The slicing trans-
formation is applied to the program n times, once per security
level in a given lattice L. A slice at level ` computes only
the values at its own security level. The slicing transformation
treats ` as a low security label and elides any computation or
value that has a higher or non-comparable label. For simplicity,
we refer to both high and non-comparable computations and
values as simply “high”.

Thus the transformation causes the low computation to skip
past any high computation and go directly to the next low
computation, if any. In the original program, it is possible that
the high computation sometimes diverges and never returns to
the low computation. But the transformation, coupled with the
scheduler discipline, guarantees that the low computation can

never observe the high computation’s timing or termination
behavior.

IV. SKETCH OF SECURE SCHEDULING

The goal of secure scheduling is to execute n insensitively
noninterfering sub-programs in a way that eliminates timing
and termination leaks. Our scheduler: (a) handles an arbitrary
lattice, (b) enforces strongly-sensitive noninterference among
comparable security levels and weakly-sensitive noninterfer-
ence among non-comparable security levels.

The scheduler prevents leaks among comparable sub-
programs by executing them in increasing order, according to
the security lattice, and hence no sub-program can observe
timing or termination channels from higher sub-programs.
Thus the scheduler guarantees strong noninterference between
comparable security levels.

A sub-program is ready to execute when all its compa-
rable, lower sub-programs have terminated. If multiple non-
comparable sub-programs are ready to execute, the scheduler
multiplexes them in a fair manner. Since the non-comparable
sub-programs being multiplexed together are sharing hardware
resources, timing leaks can occur through caches, branch
predictors etc. Therefore, the scheduler can only guarantee
weak noninterference among non-comparable security levels,
unless it receives support from architectural level. During
multiplexing, the scheduler is essentially interleaving the
computations of multiple sub-programs, and hence care must
be taken to provide the guarantee of weak non-interference
among non-comparable security levels. Naive schedulers that
vary the number of sub-programs being multiplexed can leak
termination information, so do schedulers that force one sub-
program to wait for another non-comparable sub-program to
terminate as a part of their scheduling strategy.

REFERENCES

[1] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications,
21(1):519, January 2003.

[2] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. ACM
Conference on Computer and Communications Security, pages 25-32,
2000.

2

Efficient and Scene-Adaptive Capture of Focal
Stacks

Daniel Vaquero, Matthew Turk
University of California, Santa Barbara

{daniel, mturk}@cs.ucsb.edu

Natasha Gelfand, Marius Tico, Kari Pulli
Nokia Research Center, Palo Alto

{natasha.gelfand, marius.tico, kari.pulli}@nokia.com

Abstract—All-in-focus imaging is a computational photography
technique that produces images free of defocus blur by capturing
a stack of images focused at different distances and merging them
into a single sharp result. Current approaches assume that images
have been captured offline, and that a reasonably powerful
computer is available to process them. In contrast, we focus on the
problem of how to capture such input stacks in an efficient and
scene-adaptive fashion. Inspired by passive autofocus techniques,
which select a single best plane of focus in the scene, we propose
a method to automatically select a minimal set of images, focused
at different depths, such that all objects in a given scene are in
focus in at least one image. We aim to minimize both the amount
of time spent analyzing the scene and capturing the images,
and the total amount of high-resolution data that is captured.
The algorithm first analyzes a set of low-resolution sharpness
measurements of the scene while continuously varying the focus
distance of the lens. From these measurements, we estimate the
final lens positions required to capture all objects in the scene in
acceptable focus. We demonstrate the use of our technique in a
mobile computational photography scenario, where it is essential
to minimize image capture time (as the camera is typically
handheld) and processing time (as the computation and energy
resources are limited).

I. INTRODUCTION

The size of a camera’s aperture provides a trade-off between
the depth of field and the amount of light that is captured by an
image with a given exposure. For an image to be sharp across a
large range of depths in the scene, a small aperture is required.
However, decreasing the aperture size is not always feasible.
Most low-end cameras, such as those found in cellphones,
have a fixed aperture size. While the aperture is usually small
enough that most of the scene is in focus, photos that require
close focusing, such as macro shots, exhibit a shallow depth
of field. For cameras that do have control over the size of the
aperture, decreasing the aperture size until the entire scene is
in focus may not be feasible due to the lack of available light.
Small apertures require long shutter speeds, which can result
in image blur due to handshake and motion of objects in the
scene.

An alternative method for acquiring a single image with a
large depth of field is to capture a set of photos focused at
different depths, also known as a focal stack (Figure 1). This
allows for using larger apertures and shorter exposure times,
but each photo will have some areas that are sharp and some
that are blurry. The images are then combined to produce a
composite that is in focus everywhere using an all-in-focus

(a) (b)

(c) (d)
Fig. 1. A focal stack (a–c) is captured by focusing at different distances.
The images are then fused to obtain an all-in-focus result (d).

image fusion algorithm [1].
A large body of work in graphics, vision, and image

processing has addressed the problem of combining focal
stacks into all-in-focus images. In contrast, the problem of how
to capture focal stacks efficiently has received less attention.
Hasinoff et al. [2] cover the entire range of depths from the
closest focus distance to infinity with the minimum number
of shots, given the characteristics of the particular camera.
However, the number of images required also depends on the
scene: scenes with large depth variations require more images,
while scenes where all objects are close to each other require
fewer images. We address the efficient capture of a focal stack
by analyzing both the properties of the camera and the scene
geometry.

II. EFFICIENT CAPTURE OF FOCAL STACKS

Why is capturing the smallest number of images important?
After all, if the entire depth range is captured, the final result
will still have all objects in focus, even if some images are
focused on depths that do not contain anything in the scene and
are therefore redundant. We are interested in both capturing
and processing all the images online on programmable cam-
eras that typically have less processing power and memory
than desktop computers. Capturing only as many images as
needed for a given scene has several advantages: shorter total
capture time, which improves the user experience and has less
risk of motion due to handshake and objects in the scene; less

3

total data that needs to be captured (a dense focal stack may
be too large to fit into the main memory of a programmable
camera or a camera phone); shorter processing time (all-in-
focus algorithms are computationally expensive); and pro-
cessing more images than needed increases the likelihood of
stitching artifacts, potentially lowering the quality of the result.

We have created an all-in-focus capture and processing
system that adapts to scene geometry. Our approach is inspired
by passive autofocus techniques in digital photography, which,
assuming a fixed aperture size, a static camera, and a static
scene, analyze a stream of preview images of the scene while
the lens sweeps from near to far focus. They determine the
plane where to focus to give the overall sharpest image. In
contrast, our approach automatically selects a minimal set of
images, focused at different depths, such that each part of the
scene is in focus in at least one of the images.

Our technique, which is presented in detail in [3], runs
in real-time, and its main steps are: (i) continuously varying
the lens focal distance through the entire depth range while
computing low-resolution (16×12) sharpness estimates, based
on a [−1 2 −1] contrast filter efficiently computed by the cam-
era’s hardware; (ii) given the sharpness estimates, calculating
where the images in the minimal set need to be focused using
a novel plane-sweep algorithm; (iii) capturing the resulting
minimal set of images in high resolution; (iv) correcting for
magnification differences between the images; (v) aligning
the images to compensate for handshake [4]; (vi) merging
the obtained stack into an all-in-focus result directly on the
camera [5]. We proposed a lens-sweep strategy for capturing
preview images that optimizes for speed while guaranteeing
coverage of the entire depth range.

III. EXPERIMENTAL RESULTS

We apply our technique in the mobile computational pho-
tography scenario on a Nokia N900 smartphone. The N900
runs the Linux-based Maemo operating system, and has a 5
MP camera, 600 MHz OMAP 3 processor and 256 MB of
RAM. We believe that our implementation is the first fully
functional all-in-focus system running entirely on a mobile
device.

We used our system to test the algorithm in a few scenes
with different variations in depth, by capturing images using
a handheld N900. We compared the speed and visual quality
of the results from three capture strategies: our method, a full
focal stack of 24 images comprising the maximal and disjoint
depth of field intervals as to cover the full depth range from 5
cm to infinity, and a standard autofocus approach that results in
a single selected plane. The experiments demonstrate that our
scene-adaptive method results in faster capture and processing
times than the techniques that capture and merge images that
cover the entire depth of field independently of the scene. It
also minimizes problems with artifacts due to motion, and
allows for processing focal stacks directly on mobile devices
with limited memory.

Fig. 2 displays the results obtained in one of the scenes,
which consisted of three depth layers. Fig. 2(a-c) shows the

(a) (b) (c)

(d) (e) (f)
Fig. 2. Scene with three depth layers: (a-c) the input images focused at
different distances, (d) full focal stack, (e) our method, and (f) standard
autofocus.

three images in the focal stack, after magnification correction
and alignment. The cropped areas shown below each image
illustrate the different levels of blur in different regions. Fig.
2(e) shows the fused result for our technique. Fig. 2(d) shows
the fused result for a full focal stack. Fig. 2(f) displays
the image obtained by simply running a standard autofocus
algorithm and capturing a single image.

As expected, only one layer appears focused in the single
image result (Fig. 2(f)). Using the full focal stack (Fig.
2(d)) resulted in several artifacts due to camera motion and
accentuated parallax for close objects, which could not be
corrected by the alignment algorithm. On the other hand,
image alignment works better on the set of 3 images given
by our technique, resulting in fewer artifacts (Fig. 2(e)).

REFERENCES

[1] A. Agarwala, M. Dontcheva, M. Agrawala, S. Druker, A. Colburn,
B. Curless, D. Salesin, and M. Cohen, “Interactive digital photomontage,”
in Proc. SIGGRAPH, 2004.

[2] S. W. Hasinoff, K. N. Kutulakos, F. Durand, and W. T. Freeman, “Time-
constrained photography,” in Proc. ICCV, 2009.

[3] D. Vaquero, N. Gelfand, M. Tico, K. Pulli, and M. Turk, “Anonymous
submission,” 2010.

[4] M. Tico and K. Pulli, “Low-light imaging solutions for mobile devices,”
in Proc. of Asilomar Conference on Signals, Systems, and Computers,
2009.

[5] A. Mihal et al., “Enblend 4.0,” http://enblend.sourceforge.net.

4

A Case for Smartphone Reuse
to Augment Elementary School Education

Xun Li Pablo J. Ortiz Jeffrey Browne Diana Franklin John Y. Oliver∗
Roland Geyer‡ Yuanyuan Zhou† Frederic T. Chong

Department of Computer Science, University of California, Santa Barbara
{xun, portiz, jbrowne, franklin, chong}@cs.ucsb.edu

† Department of Computer Science and Engineering, University of California, San Diego
yyzhou@cs.ucsd.edu

∗ Department of Electrical Engineering, Cal Poly San Luis Obispo
jyoliver@calpoly.edu

‡ Donald Bren School of Environmental Science and Management, University of California, Santa Barbara
geyer@bren.ucsb.edu

I. INTRODUCTION

Today, personal computing is shifting from traditional
desktop computers to mobile devices, such as MP3 players,
PDAs and cellular phones. Companies like Nokia, Samsung,
Google and Apple have spurred innovation such that today,
smartphones come standard with touch screens, GPS, cameras,
as well as a whole suite of connectivity options. Moreover,
mobile devices will continue to advance in the coming years.
The capabilities that seem high-end today will be standard
fare in the next generation of devices and basic requirements
in even later devices.

However, the dark side of Moore’s Law is the waste caused
by our society’s insatiable desire to frequently upgrade our
mobile devices. The typical cellular handset is discarded after
only 18 months. The environmental impact of this stream
of handsets in terms of manufacturing energy, materials and
disposal costs is alarming. Our initial work [2] investigates
reusing embedded microprocessors, showing that the energy
required to manufacture a processor far out-strips the energy
consumed during the processor’s lifetime for most low-power
embedded processors. Similar relationship also holds for entire
smartphone systems. By repurposing retired mobile devices we
can significantly amortize production energy of these devices
and reduce their environmental impact.

Even if we believe that it is more environmentally friendly
and feasible to reuse mobile phones, we need to find a market
for these mobile phones. We argue that use in educational
classrooms is a promising candidate for reused smartphones,
given the potential benefits to elementary school students who
may not commonly own cellular phones (or are forbidden from
having them in school). Note that we focus on repurposing
smartphones in non-phone applications and expect cellular
calling capabilities to be disabled. Phone manufacturers prefer
this model, as it avoids competition with new product lines and
avoids the political pitfalls of “dumping” old technologies into
“second-class” markets.

Compared with conventional ways of teaching in which

students often learn in a passive manner, education using
mobile phones enables more active models of learning. For
example, participatory sensing [4] uses mobile devices to form
interactive, participatory sensor networks that enable every
user to gather, analyze and share local knowledge.

Unfortunately, we are still far away from reusing smart
devices for education purpose due to the fact that the power
consumption and resource usage of educational applications
on mobile platforms has not been explored, so there are
no observations indicating that the resource requirement of
educational applications can be satisfied by recycled cellular
phones. As a pioneering work for designing life-cycle aware
mobile devices, we aim at solving the above problems by
making connections between the resource provided by mo-
bile devices and demanded by educational applications, and
proposing potential solutions for existing challenges.

II. EDUCATIONAL APPLICATION CHARACTERIZATION

To characterize the resource requirement of educational
applications on smartphones, we perform different experiments
by running the most popular free applications related to
elementary school education from the Educational Category
of Google ADC Top 200 applications [3] on The HTC Nexus
One. We study the static resource requirements for each
application including their functional requirements and storage
requirements, as well as their dynamic resource usage such as
memory usage, power consumption and network communica-
tions.

• Function Requirement One of the main issues of reusing
mobile devices is that phones wear out with long-term
use, rendering some components useless. It is critical
to investigate the function requirements of educational
applications before deciding the feasibility of reusing
smartphones for such purpose. We find out that most of
the applications (10/12) rely on the network connection,
while other functions are less widely used by certain
categories of applications (e.g. only 3 applications use
the camera). More importantly, we observe that most

5

applications only need around 3 in all 10 common device
features (at most 4), so that damage to any single com-
ponent will not affect the use of most other applications.
Thus, although mobile devices will wear out during use,
they can still be reused in most scenarios as long as the
network adapter remains functional along with at least a
few other components.

• Storage Requirement The storage requirement of each
application includes the application program and the data.
We observe that for each application, the application size
dominates the total storage, averaging around 1.2MB,
while the data size increases slowly. Assuming a total
size of application and data to be 2.6MB, which is the
maximum size among the applications, a 190MB flash
memory can support installing more than 70 applications.
We also calculate that a 512MB flash memory will have a
useful lifespan of 6.5 years. According to such degrading
speed, a reused smartphone with original internal stor-
age of 512MB after 18 months will still have 400MB
functional cells. Taking away the storage requirement by
the Android OS (512MB - 190MB = 322MB), 80MB
storage space is still available for the applications. Hence
a reused Nexus One is still capable of installing more
than 30 applications without any difficulty.

• Memory Usage We measure that the average memory
usage of educational applications is around 8KB, and
the peak memory requirement can reach 22KB. This
memory requirement is extremely small compared to the
available memory space provided by the RAM of the
Nexus One; the total capacity of the RAM is 512MB,
of which around 300MB is used for system and default
background applications including mails and browsers.
Around 200MB of memory is still available for running
userspace applications.

• Power Consumption We measure the real power con-
sumption of running educational application on The
Nexus One. The accumulated current is measured by a
DC meter interposed between the battery and the phone,
while the voltage is sampled by the logger application
through operating system interface. From our results we
observe that the gap between the power consumption of
stand-by and active mode is large: 72mW versus 910mW
as an average when running educational applications. The
major difference comes from the power consumption by
the touchscreen.
To understand the battery usage of the smartphone, we
obtain a linear relationship between the capacity of the
battery and the number of charging cycles for a 1400-
mAh mobile battery from [1]. Based on the relation
and the assumption that a new battery with 1400mAH
capacity contains 5880mWH of energy and is able to
last for 32 hours without recharging in a typical usage
model [5], we calculate that in general situations a battery
could be reused for another 2.3 years after 18 months of
regular use.

• Network Communications We measure the network

communication statistics of educational applications
through Android OS interface. The average network
requirement for all applications is 655bytes/second in
average, and the peak network bandwidth requirement
can be as high as 160KB per second. Assuming a big
classroom with 100 students, a maximum of 16MB/s
bandwidth network is needed. We also calculate that by
switching the internet access from the phone network to
the Wi-Fi network during using those applications, 12MJ
of energy can be saved everyday.

III. CHALLENGING ISSUES IN REUSE
Although the energy cost and environmental impact of

manufacturing smartphones has been a pressing problem, and
recycled phones are capable of running different types of
applications in terms of functions, storages, memories and
powers supplies, the heterogeneity of different models of de-
vices holds back potential smartphone reuse. In addition to the
heterogeneity generated by vendors, software developers need
to consider the following design characteristics to effectively
use recycled devices.

• Significantly degraded reliability. Compared to new de-
vices, recycled ones are much less reliable due to wear
out.

• Partially configured devices. Some devices may not have
all the necessary configurations to run every application.

• Different processing power and timing guarantees. Some
devices may have significantly slower processing power
and memory/IO access latencies.

IV. CONCLUSION AND FUTURE WORK

In this paper we demonstrate the potential benefits of
reusing smartphones by analyzing their manufacturing and
life-time energy. Based on our experiments on The HTC Nexus
One platform, we show that although different components in
smartphones degrade from use, their functionalities, available
resources and power supplies are still able to satisfy the
requirement of educational applications. Though we use the
Nexus One as our unique experimental target, our contribu-
tions and observations could be easily extended to other mobile
architectures.

Future work will focus on ways of handling the different
challenges we identified in this paper. The software develop-
ment methodology needs to be capable of taking life-cycle
issues into account. Moreover, new types of collaborative
applications for classroom settings will also be a interesting
future work.

REFERENCES

[1] S.S. Choi and H.S. Lim. Factors that affect cycle-life and possible
degradation mechanisms of a li-ion cell based on licoo2, 2002.

[2] R Geyer, J Oliver, R Amirtarajah, V Akella, and FT Chong. Life
cycle aware computing: Reusing silicon technology. IEEE Computer,
40(12):56–61, 2007.

[3] Google Inc. ADC 2 top 200 gallery: Education/reference.
http://code.google.com/android/adc/.

[4] Participatory Sensing. J. burke, d. estrin, m. hansen, a. parker, n.
ramanathan, s. reddy, m. b. srivastava. WSW06 at SenSys 06,, 2006.

[5] Jeff Sharkey. Coding for life–battery life, that is. In Google I/O, 2009.

6

Fighting Fire with Fire: Superlattice Cooling of
Silicon Hotspots to Reduce Global Cooling

Requirements
Susmit Biswas?, Mohit Tiwari?, Timothy Sherwood?, Luke Theogarajan†, Frederic T. Chong?

Department of Computer Science?,Department of Electrical and Computer Engineering†
{susmit, tiwari, sherwood, chong}@cs.ucsb.edu?, ltheogar@ece.ucsb.edu†

I. INTRODUCTION

The running costs of data centers are dominated by the need
to dissipate heat generated by thousands of server machines.
Higher temperatures are undesirable as they lead to premature
silicon wear-out; in fact, mean time to failure has been shown
to decrease exponentially with temperature (Black’s law [2]).
Although other server components also generate heat, micro-
processors still dominate in most server configurations and
are also the most vulnerable to wear-out as the feature sizes
shrink. Even as processor complexity and technology scaling
have increased the average energy density inside a processor
to maximally tolerable levels, modern microprocessors make
extensive use of hardware structures such as the load-store
queue and other CAM-based units, and the peak temperatures
on chip can be much worse than even the average temperature
of the chip. In recent studies, it has been shown that hot-
spots inside a processor can generate ∼ 800W/cm2 heat flux
whereas the average heat flux is only 10 − 50W/cm2, and
due to this disparity in heat generation, the temperature in hot
spots may be up to 30 ◦C more than average chip temperature.

The key problem processor hot-spots create is that in order
to prevent some critical hardware structures from wearing out
faster, the air conditioners in a data center have to be provi-
sioned for worst case requirements. Worse yet, air conditioner
efficiencies decrease exponentially as the desired ambient
temperature decreases relative to the air outside. As a result,
the global cooling costs in data centers, which nearly equals
the IT equipment power consumption, are directly correlated
with the maximum hot spot temperatures of processors, and
there is a distinct requirement for a cooling technique to
mitigate hot-spots selectively so that the global air conditioners
can operate at higher, more efficient, temperatures.

We observe that localized cooling via superlattice microre-
frigeration presents exactly this opportunity whereby hot-spots
can be cooled selectively and allow global coolers to operate at
much more efficient temperatures. Recent advances in proces-
sor cooling technologies have demonstrated that thermoelectric
coolers (TEC), which use a Peltier effect to form heat pumps,
can be used to reduce the temperature of hot spots. By apply-
ing a thermoelectric cooler between the heat spreader and the
processor die and applying current selectively at the hot spots,

heat from the hot-spots can be spread much more efficiently.
The ability to implement such thermoelectric coolers on a real
silicon device has been demonstrated recently [3], albeit for
small prototype chips. The key question then, that needs to be
answered before such thermoelectric coolers can be integrated
in commodity server processors, is “What is the potential for
superlattice microrefrigeration to reduce global cooling costs
in data centers?”.

Fig. 1. Heat Flow

In order to answer this question, we present a compre-
hensive analysis of the impact of thermoelectric coolers on
global cooling costs. Our thermal analysis covers all aspects
of cooling a server in a data center, and integrates on-chip
dynamic and leakage power sources with a detailed heat
diffusion model of a processor (that models the silicon to
the thermoelectric cooler to the heat spreader and the heat
sink) and finally the computer room air conditioner (CRAC)
efficiency, as shown in Figure 1. In Section II, we present the
components of the system model.

II. MODELING CHIP TO DATA-CENTER COOLING

In order to quantify the benefits of using TEC based cooling,
we need to estimate the peak temperature, which determines
the mean time to failure (MTTF), as well as the consumption
of power by the microprocessor - taking into account the
leakage and temperature feedback loop. We use curve fitting
techniques along with ITRS [1] data to model the leakage
power consumption in the active layer. We use the finite

7

Fig. 2. Effect of TEC of Thermal-profile

difference method of computing the steady state temperature
by solving heat diffusion equation (1) with boundary condition
of convective cooling (equation (2)) using an explicit method
which promises greater scalability for fine grain analysis. TEC
is modeled as a heat soure at the hot side and a sink at the
cold side with pumping rate as shown in equation (3), and
we model CRAC efficiency (Coefficient of Performance) with
equation (3) as proposed by Moore et al. [4] for estimating
the cooling power consumption.

T
t+1

= T
t

+

0

@

k∆t

ρCp

1

A

» 1

∆x2

`

Mx + My + Mz
´

T
t

–

+
g∆t

ρCp
(1)

Mx(Tx,y,z) = Tx−1,y,z + Tx+1,y,z − 2.Tx+1,y,z(My, Mzsimilar)

Tsurf+∆x = Tsurf − ∆x.
h

k
.(Tsurf − Tamb) (2)

gT EC =
1

∆x2

0

@0.5
α2

ρe
T

2
cold−side

1

A (3)

COP (T) = a2T
2

+ a1T + a0 (4)

Pcooling = (Pleak+dyn/COPCRAC,Tamb+∆)

+CapacityT EC ∗ AreaT EC /COPT EC (5)

By integrating all the models, cooling power at (TAmb +∆)
ambient temperature is estimated as equation (4). We perform
our experiments by collecting dynamic power density traces
of several SPEC CPU2000 benchmarks. Leakage power is
modeled using ITRS data [1] and as a 3rd order function
of temperature. We developed a tool that solved the heat
diffusion equations (1) - (3) using the finite difference method
to estimate the total power consumption and the temperature
profile of the chip-package. We present the results only for a
representative benchmark apsi in Section III.

III. RESULTS

By increasing the ambient temperature by 5 ◦C (288K
to 293K), the peak temperature of the die increases, and
by using a TEC layer, the peak temperature is reduced as
shown in Figure 2. We experiment with various TEC pumping

Fig. 3. Effect of TEC on cooling power and MTTF

capacities (400, 500, 600, 800W/cm2) and present the result
for apsi in Figure 3 where bars plotted agains y1 axis indicate
the cooling power consumption, and MTTF of the hottest
point is plotted against the y2 axis. Through curve-fitting,
we find that TECs allow the CRAC to operate at 6.5 ◦C
higher temperatures (294.5K) which translates into a 25.73%
reduction in cooling power, while maintaining the same worst-
case on-chip temperatures i.e. without degrading the lifetime
of the processor.

REFERENCES

[1] The International Technology Roadmap for Semiconductors.
http://www.itrs.net/.

[2] J. Black. ElectromigrationA Brief Survey and Some Recent Results. IEEE
Transactions on Electron Devices, 16(4):338–347, 1969.

[3] I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan,
R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian. On-
chip Cooling by Superlattice-based Thin-film Thermoelectrics. Nature
Nanotechnology, 2009.

[4] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Scheduling
”Cool”: Temperature-Aware Workload Placement in Data Centers. In
ATEC ’05: Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 61–75, Berkeley, CA, USA, 2005. USENIX
Association.

8

Information Flow Secure Architectures
Mohit Tivari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, Timothy Sherwood

Department of Computer Science
University of California, Santa Barbara

{tiwari,xun,hwassel,chong,sherwood}@cs.ucsb.edu

Systems responsible for controlling aircraft, protecting
the master secret keys for a bank, or regulating access to
extremely sensitive commercial or military information, all
demand a level of assurance far beyond the norm. Creating
these systems today is an incredibly expensive operation
both in terms of time and in terms of money; even assess-
ing the assurance of the resulting system can cost upwards
of $10,000 per line of code [1]. Ideally one can demon-
strate strict non-interference, which requires showing that
sensitive inputs can never have a measurable effect on an
output marked as non-sensitive, a task for which traditional
microprocessors are very poorly suited. Microprocessors
today contain status bits, exceptions, caches, predictors,
bus arbiters, and other behaviors that modify the state of
the machine and make it extremely hard to show that no
internal state affected by sensitive information is visible
to other components, either directly through the ISA, or
indirectly through the resulting differences in behavior or
timing.

We propose, for the first time, an architecture that can
execute mixed-trust code and yet can be verified at the gate
level to provide provably strong information containment.
We introduce Execution Leases, an architectural mecha-
nism that makes all information flows (from the gates up)
explicit to the programmer, including timing, covert and
implicit flows through control/architectural state. Using
this mechanism, programmers can explicitly control all in-
formation flows through the machine, and write programs
that conform to specific policies such as non-interference
even while executing untrusted code, conditional branches,
and indirect memory accesses. When compared to the
prior architecture based on Gate Level Information Flow
Tracking [2], Leases yield programs that can be a 100x
faster in some cases, several factors smaller, and far easier
to program.

Execution Leases: The basic idea behind a lease is that
control of a portion of the machine is given over to an
untrusted entity for a fixed amount of time and within a
fixed range of addresses. After the lease expires, control
is yanked back to the trusted code and any remnants of
the untrusted actions are purged from the critical machine
state such as the PC. Registers and main memory are not
part of the critical machine state and retain their values
and their security labels even after a lease expires. The
hard part is that leases have to be implemented in such a

way that i) enforcement of the lease can never by affected
by tainted data, ii) the critical tainted state (e.g. the PC)
can be scrubbed leaving no residue of tainted data behind,
and iii) that it is clear through a gate-level analysis of the
flow of information that properties (i) and (ii) hold (e.g. it
does not depend on some property of the software or some
semantics of some state to show that (i) and (ii) hold).

Because we want our implementation and analysis of
Execution Leases to be demonstrably sound from the gates
up, we perform this work under the framework of Gate-
Level Information Flow tracking (GLIFT [2]). GLIFT
is based on the intuition that all information flows, be
they explicit, implicit, or even timing channels, look the
same at the level of simple logic gates where weakly
defined ISA-level descriptions give way to precise logical
functions. The authors build on this idea, define precisely
the information flow through a NAND gate, and show
how to compose information flow through a combination
of NAND gates in order to track all information flows
through arbitrary logic in a sound fashion.

GLIFT in and of itself does not ensure that critical or
untrusted data do not spread across the whole machine,
rather it only ensures that as critical or untrusted data
spread across the machine it will always be properly
tracked. The challenge is to create an architecture capable
of containing the flow of information so tightly that, by
looking only at the gate-level implementation it is apparent
that it cannot leak, while simultaneously retaining enough
flexibility to be efficiently programmed to a variety of uses.
In [2], a very simple architecture is used to show that
this is indeed possible in principle by removing all branch
instructions (replacing them with predicates) and ensuring
that there is no possible way for the program counter or
memory address to ever be effected by any tainted data
(i.e. no tainted code or indirect memory accesses). This
severely restricts the usefulness of the architecture – to
even lookup an entry in a simple table of size n takes
Ø(n) steps instead of the Ø(1) that it would with a simple
indirect load.

Making Lease Semantics Inherent in Gate-Level Im-
plementation Consider the execution of arbitrary tainted
code. This case, where the bits of the actual instruction
are tainted, is the most difficult to bound. An untainted
function (e.g. some trusted function), wishes to call a
tainted function (e.g. some arbitrary code). Instead of a

9

PC

+1

through decode

is jump?

jump target

Reg

File

PRegs

restore PC

timer expired?

0

1

0

1

Untainted

> start

< end

Data Mem

Instr Mem

Memory Address

Bounds

Fig. 1: Execution Lease Architecture: Lease logic (dashed) bounds
tainted programs in both time and space, and prevents the entire
system state from becoming tainted. PC is restored to an untainted
restorePC value when an untainted timer expires. Lease logic is also
used to bound the memory regions the tainted code can access.

call-and-return, we can ensure that control will be restored
to the leaser context using a timer. In essence, one leases
the program counter out to the leasee for a fixed amount
of time. Once the timer expires, control is automatically
restored back to a return PC value that was provided by
the leaser when it invoked the lease. Figure 1 shows the
Lease architecture, and a scenario where untainted code
leases the CPU to some tainted code. The timer value
itself and the restore PC are untainted, and when the timer
expires, a MUX is used to reset the PC to the restore PC.
Correspondingly, the GLIFT-logic observes that the MUX
output is dependent solely on untainted values (i.e the old
tainted PC has no effect), and marks the PC as untainted.

Further complexity is introduced by the need to support
multiple nested leases to support multi-level procedure
calls. The need for multiple nested leases naturally sug-
gests maintaining a stack of lease records that stores the
time the lease is active for and the PC value that the control
must return to when the lease expires. However, following
the usual stack semantics, if we always use the current
stack pointer to compute the next, once the stack pointer
register is tainted, it will prevent itself from ever being
reset to untainted. To get around this problem, in our stack
implementation, the caller lease sets the stack pointer value
to return to when it calls a new lease.

To implement successively nested timers, we encode the
timers as a bit-vector where each bit represents a minimum
time unit. For instance, a timer of value 00...0111 will
execute for three time units. Decrementing these timers
then requires shifting the register to the right once every
time unit with a 0 entered at the MSB. Nesting of
successive timers is enforced at the bit level by using the
0s in the right-shifted current timer value as the prefix
of the next timer. This mechanism encodes the timer
semantics in its bit-level implementation, and provides
gate-level information flow guarantees as opposed to an
intuitive scheme that used subtractors to decrement the
timers (more details in the full paper).

Similarly, we demonstrate how enforcing memory
bounds using a comparator to check whether the address
is within bounds leads to the entire memory being marked
as tainted. Instead, we encode the memory bounds in a
ternary format (where 10 ∗ ∗ represents the range 1000 to
1011) and concatenate the address sent to memory using
leading bits from the trusted bound, and replacing the ∗-d
don’t care bits with the tainted address bits.

ISA, Language and Compiler support for Leases:
The flexibility of the Lease architecture is exposed to
programmers through two new instructions settimer
and setbounds. The settimer instruction allows the
caller to specify a fixed time for the callee to execute, and
whether the callee can execute general purpose instruc-
tions (such as conditional jumps), while the setbounds
instructions require a power-of-2 aligned range and a
timer. We have designed a simple language as a subset of
C and adding a lease (function, mode, time,
bounds statement. A simple compiler is used to help the
programmers with deciding the time and memory bounds
in GLIFT mode, and performs the job of optimizing the
placements of arrays in memory so as to lease them to
diffent functions with minimal copying over.

Synthesizable FPGA prototype and Applications: To
complete our evaluation of the Lease architecture, we
have implemented a CPU prototype in Verilog, augmented
it automatically with information flow tracking logic (as
in [2]), and synthesized it down to an Altera FPGA.
As compared to an Altera-Nios standard processor (1̃000
ALUTs) and the original GLIFT processor in [2] (1̃000
ALUTs), a lease CPU with 8 lease contexts in hardware
is 80% larger. With shadow logic, a Lease sh CPU at
5000 ALUTs grows to 3X as opposed to 1.7X for the
original CPU. We believe compiler analysis can be used
in the future to bring down the number of hardware
lease contexts and bring this overhead down considerably.
To demonstrate the improvement in performance, we re-
wrote all the security kernels in [2]. By introducing
protected indirect loads/stores, we see a 68X improvement
in AES and 8X in FSM. We also demonstrate the improved
programmability bv writing a small encryption library that
uses function calls and untrusted I2C drivers using the
Lease language.

References
[1] “What does cc eal6+ mean?” http://www.ok-

labs.com/blog/entry/what-does-cc-eal6-mean/.
[2] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and

T. Sherwood, “Complete information flow tracking from the gates
up,” in Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2009.

10

Internet usage patterns in a rural wireless network
in Macha, Zambia

David L. Johnson, Elizabeth M. Belding, Kevin Almeroth Gerjan van Stam
Department of Computer Science, University of California Linknet, Macha, Zambia

{davidj, ebelding, almeroth}@cs.ucsb.edu gertjan.vanstam@machaworks.org

Abstract— There have been a number of rural wireless net-
works providing Internet access over the last decade but little is
known about how the Internet is being used, how these networks
perform and whether they follow similar trends when compared
with Internet usage patterns in developed regions. We analyse
a set of network traces from the Linknet wireless network in
Zambia, which provides Internet access to approximately 300
residents of a rural village using a satellite link and a combination
of point-to-point links, hotspots and wireless mesh networks. Our
analysis reveals largely web-based traffic as opposed to the peer-
to-peer traffic dominance that one finds in urban areas. Social
networking sites receive the most hits, and large file downloads
from operating system repositories contribute the most to the
bandwidth consumption.

I. INTRODUCTION

There are many rural wireless networks that have been
operational since 2005. Some key examples are Airjaldi in
India [1], the Peebles Valley Wireless network in South
Africa [2] and the Linknet wireless network in Zambia [3].
These networks are unique in that they need to overcome
challenges such as long distances between wireless nodes, low-
bandwidth gateways to the Internet, lack of reliable power and
high cost of Internet connectivity.

Rural wireless networks usually share a low-bandwidth,
costly link to the Internet amongst a large user base. This
means that any inefficiencies in the network can render a
slow shared Internet link almost unusable. Analysing and
understanding the traffic distribution, web usage patterns and
source of bottlenecks can facilitate network designs that are
optimized to give rural users a better Internet experience and
bring down usage costs.

There has been a significant amount of work that has tracked
Internet usage behaviour in urban areas over the past decade,
but there is a large gap in analysis of Internet usage in the
small set of rural wireless networks that are now in existence.
For example, most recent Internet usage studies show that over
half the Internet traffic is peer-to-peer (P2P) traffic. However,
P2P traffic over a satellite link is costly and inefficient, and
hence is likely to be less prevalent in a rural network.

In this work we analyse a set of Internet gateway trace
logs and proxy access logs from the Linknet wireless network
in Zambia over a period of 2 weeks in February 2010. The
wireless network provides Internet access to approximately
300 residents of a rural village, as well as numerous inter-
national visitors. The results show that the network is heavily
biased towards social networking-based web traffic and much

of the potentially cacheable traffic, like Youtube videos, are
not cached.

II. BACKGROUND AND NETWORK
ARCHITECTURE

Macha, Zambia is a typical poor rural area in Africa with
scattered homesteads, very little infrastructure and people
living a subsistence lifestyle. However, in the middle of this
rural area is a mission hospital, medical research institute and
community centre that has provided connectivity to approxi-
mately 300 community workers and visitors since 2004 using
satellite-based Internet. Over the past few years the Internet
connection has been spread to a large portion of staff in the
area, as well as the community centre, which has an Internet
Cafe. The VSAT connection has a committed download speed
of 128 kbps bursting to 1 Mbps and a committed upload speed
of 64 kbps bursting to 256 kbps with no monthly maximum.
The total monthly cost of the C-band VSAT connection is
$1200 (US dollars). The wireless connectivity is spread over
6 square kilometres using standard WiFi clients as well as
mesh networks. There are about 100 wireless nodes in the
network.

III. GOALS AND MEASUREMENT PROCESS

Our goals are three-fold: The first goal is to understand the
usage patterns of users in a rural context to evaluate differences
from an urban setting and gain insight into the needs of
users in a rural setting. The next goal is to understand the
performance of the network to find out what unique challenges
are prevalent in rural networks. Our final goal is to make use
of the learning from the first two goals and suggest ways in
which the performance can be improved.

IV. TRAFFIC USAGE ANALYSIS

In this section we present an analysis of the usage patterns
from squid proxy logs over 14 days. The proxy had a cache
hit rate of 43% with an actual bandwidth saving of 19.59%.
This low fraction of bandwidth saved is fairly common due to
the dynamic nature of the Internet today. The usage followed
a typical diurnal pattern but the off-peak period was very short
due to users staying up late or waking up early to make full
use of the extra available bandwidth during these hours.

Web traffic accounts for 68.45% of the traffic when standard
HTTP and secure HTTP are combined and is clearly the
dominant protocol. This is in sharp contrast to developed

11

*.fbcdn.net

<error>

*.google.com

*.co.zm

*.facebook.com

*.postzambia.com

*.yahoo.com

*.yimg.com

*.msn.com

*.windowsupdate.com

*.lusakatimes.com

*.doubleclick.net

*.googlesyndication.com

*.ubuntu.com

other

13.61%

12.50%

7.88%

7.58%

6.65%

4.30%

2.62%

2.03%

1.86%

1.63%

1.56%

1.01%

0.99%

0.49%

35.27%

Fraction of requests

D
om

ai
n

(bytes = 11.54%)

(bytes = 5.56%)

Fig. 1. Web traffic classification by domain visited.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

0

5

10

15

20
Total hits
Average time between
same video being hit

Popularity rank

hi
ts

ho
ur

s

Fig. 2. Youtube popularity.

countries in which 2008/2009 studies show that Web traffic
accounts for between 16% and 34% of Internet traffic due to
the high prevalence of P2P traffic [4]. 26.47% of traffic could
not be classified with simple port based techniques most likely
due to traffic like Skype, which is extensively used in Macha,
and applications not using known assigned IANA ports.

Figure 1 classifies web traffic into the top 15 site domains.
The most startling pattern that emerges is the dominance of
Facebook. The Facebook host site and CDN make up 20.26%
of the total requests. This is close to 3 times greater than
the next most visited site, Google. This presents an amplified
correlation with social networking trends that are seen in
modern urban networks. Local web sites in Zambia form the
third most dominant category, which is encouraging in the
sense that local relevant content and language is available
to Zambians. There is a large amount of file downloading
from package repositories like Ubuntu and Microsoft. 2% of
the total web requests are to known advertising domains with
more likely in the “other” category. This essentially constitutes
wasted bandwidth as the advertising has no relevance to local
rural Zambians.

In figure 2, we use our Macha data to rank downloaded
Youtube videos by their popularity, and graph the number of
hits for the top 15 most popular videos. Of 3162 Youtube
hits over two weeks, there were 451 unique videos, but the
top 15 ranked videos accounted for 75% of the total Youtube
requests. This leads to saturation of the satellite link where

downloads fail or are abandoned by the users as no caching
is possible for YouTube content using standard squid proxy
servers.

V. RECOMMENDATIONS

Due to the limited amount of expert networking skills
in the area, a ClarkConnect pre-configured gateway server
was used in Macha. However, this and other similar pre-
configured gateways are not optimized for severely constrained
Internet up-links and the following customizations would have
a significant positive impact on the network:
• Changing the caching behaviour of squid to be able to

identify when the same content is being served by a different
URL when accessing content from a CDN like Youtube.
This can be done by rewriting the URL request to only
preserve the static video ID. Other techniques, such as
value-based web caching, deal with dynamic URLs by
generating indices based on document content [5].

• Preventing wasted Satellite bandwidth by creating a local-
ization server which uses the social graph in facebook to
enable users to share content with each other locally.

• Making use of cache optimizations such as HTTP chunking,
time shifting to off-peak hours and data compression to
improve the throughput and response times for users.

• Filtering requests to advertising domains such as dou-
bleclick.net.

• Making use of a data-ferry synchronization station for
repositories like Ubuntu using a dedicated small-footprint
PC such as “PC in a plug” that is carried by frequent
travellers.

VI. CONCLUSION

From the results it was apparent that the behaviour of
the Internet in a rural wireless network connecting through
a satellite is very different from that of an urban network
in a developed region. More attention should be given to
building pre-packaged networking solutions for rural wireless
networks that are cognizant of the characteristics that have
been highlighted in this paper. Some of the problems were
addressed in the early days of the Internet when last-mile
access was similar to what is currently experienced in rural
networks, but many of the problems are new as the Internet
has become more dynamic and media-rich. As the average
web page size continues to grow, the digital divide will widen
unless innovative networking techniques, which mitigate these
increasing bandwidth demands, are employed.

REFERENCES

[1] S. Surana, R. Patra, S. Nedevschi, M. Ramos, L. Subramanian, Y. Ben-
David, and E. Brewer, “Beyond pilots: Keeping rural wireless networks
alive,” in NSDI, April 2008.

[2] D.L. Johnson, “Evaluation of a single radio rural mesh network in south
africa,” in ICTD ’07, December 2007.

[3] J. Backens, G. Mweemba, and G. van Stam, “A Rural Implementation
of a 52 Node Mixed Wireless Mesh Network in Macha, Zambia,” in
Africomm ’09, December 2009.

[4] H. Schulze and K. Mochalski, “ipoque Internet Study 2008/2009,” 2009.
[5] B. Du, M. Demmer, and E. Brewer, “Analysis of WWW traffic in

Cambodia and Ghana,” in World Wide Web conference WWW ’06, May
2006.

12

Fast Nearest Neighbors in Large Networks
Petko Bogdanov, Ambuj K. Singh

University of California, Santa Barbara
{petko, ambuj}@cs.ucsb.edu

Abstract—We address the problem of k Nearest Neighbor
(kNN) search in networks, according to a random walk based
proximity measure. Our approach retrieves the exact top neigh-
bors at query time without relying on off-line indexing or
summaries of the entire network. This makes it suitable for very
large networks, as well as for composite network overlays mixed
at query time. We provide scalability and flexibility without
compromising the quality of results due to theoretical bound
guarantees that we develop and incorporate in our search proce-
dure. We incrementally construct a subgraph of the underlying
network, sufficient to obtain the exact top k neighbors. We guide
the construction of the relevant subgraph in order to achieve fast
refinement of the lower and upper proximity bounds, which in
turn enables effective pruning of infeasible candidates.

We apply our kNN search algorithm on social, information
and biological networks and demonstrate the effectiveness and
scalability of our approach. For networks in the order of a million
nodes, our method retrieves the exact top 20 using less than 0.2%
of the network edges in a fraction of a second on a conventional
desktop machine without prior indexing. When employed for
nearest neighbors search in composite network overlays, it scales
linearly with the number of networks mixed in the overlay.

I. INTRODUCTION

The recent growth of online social and information networks
gave rise to the emerging field of Network Science [2].
It aims at studying and modeling the behavior of agents,
interacting within communication, socio-cognitive and infor-
mation networks treated as a single composite ecosystem of
inter-dependent layers. The individual network layers within
this system are typically large-scale and dynamic. Pairwise
relations among entities and agents in networks arise from
different sources and can be based on multiple features. For
example, people may have accounts in several online social
networks, targeted towards different interaction types. This
diverse social ambiance is complemented by an information
layer of email communication, postings and discussion of
blog entries or shared photographs. Supporting exploratory and
analysis tasks in such composite systems has to be flexible and
scalable in order to reflect frequent network changes and user-
centric prioritization of the different components.

We propose a scalable approach for k Nearest Neighbor
(kNN) search in networks. Given a query node in a network,
the problem is to identify its k closest nodes. We general-
ize kNN to multiple networks over the same set of nodes,
called network overlays. A scalable kNN search provides
an important tool for exploration and analysis of the abun-
dance of networked data. It allows for characterization of
the neighborhood of a node and enables diverse applications,

such as community identification, anomaly node detection,
classification, link prediction and collaborative filtering.

II. METHODS

We define a proximity measure Effective Importance (EI),
that is related to a recent graph partitioning method [1].
EI captures community structure and exhibits advantageous
theoretical properties that allow its efficient bounding with
guarantees in an online fashion. EI is defined as the degree-
normalized stationary probability of node visit in random
walks with restarts (RWR) to the query node. Performing
RWR with non-zero restart probability creates a bias, causing
neighbors of the restart node to receive more visits per adjacent
edge.

We partition the nodes in the graph in three sets: (i) a
set of active nodes K; (ii) a set of fringe nodes F , directly
connected to nodes in K; and (iii) all other nodes U . The set
of known nodes is originally seeded with the restart nodes and
its immediate neighbors. Our kNN algorithm operates on the
set K, using lower and upper bounds to all network nodes,
also computed solely within K. The smaller the active set K,
the lower the online search time.

We derive two graph augmentations of the subgraph induced
by K that result in lower and upper bounds to the proximity
values of all nodes in K

∪
F . In addition we derive an upper

bound to all unknown nodes in U . We use our lower and upper
bound constructions for pruning nodes that will not be among
the k nearest neighbors. Details on the bounds derivation can
be found in the technical report [3].

If the bounds are tight for a specific instantiation of the
known set K we can return the exact neighbors. When the
bound are not tight enough to determine the exact set of top
neighbors, we expand K with more graph nodes. Subsequent
expansions of K refine the bounds estimation and shrink the
node feasibility intervals making guarantees possible for the
nearest neighbors set.

Our online kNN search is outlined in Algorithm 1. The
input consists of the query node r, the restart probability α,
the number of top neighbors k and the network. The set K
is initialized with the query node and its immediate neighbors
(line 3). Next, we compute the lower and upper bounds (line
4) of the EI of nodes in the subgraph GK

S

F , according to
our constructions. The upper bound for all unexplored nodes
(part of U) is estimated in (line 5). A series of expansion
and refinement steps is performed until the top-k list can be
guaranteed using the feasibility intervals of candidate nodes
(lines 6-9).

13

Algorithm 1 Online kNN Search
1: Input: r, α, k and G
2: Output: Ordered set of top-k nodes
3: Initialize K = {r}∪{j, (i, j) ∈ E}
4: Compute qα

lb and qα
ub

5: Compute qα
ub(u), u ∈ U

6: while Top k cannot be guaranteed do
7: Extend K with the nodes highest qα

lb

8: Refine qα
ub, qα

ub and qα
ub(u), u ∈ U

9: end while
10: return Top-k nodes

Composite network overlays model the connections of a
node in multiple networks in which it participates. We consider
kNN search according to user prioritization of the networks
in the overlay. In order to select a small relevant subnetwork
in a composite network, we push the mixing of the layers into
the expansion step of our kNN search (step 7 of Algorithm
1). We expand with priority-aware best expansion candidates,
taking into account feasibility intervals computed according to
all layers at the previous expansion iteration.

10
3

10
4

10
5

10
610

−4

10
−3

10
−2

10
−1

10
0

Number of Nodes

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

k = 5

k = 10

k = 20

k = 30

(a) Pruning

10
3

10
4

10
5

10
610

−2

10
0

10
2

10
4

Number of Nodes

T
im

e(
s)

k = 5

k = 10

k = 20

k = 30

Full

(b) Running time

20k 80k 200k
0

0.2

0.4

0.6

0.8

Number of Edges

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

k = 5
k = 10
k = 20
k = 30

(c) Pruning

20k 80k 200k
10

−2

10
−1

10
0

10
1

10
2

Number of Edges

T
im

e(
s)

k = 5

k = 10

k = 20

k = 30

Full

(d) Running time

Fig. 1. Average performance for increasing number of nodes and fixed
average degree of 6 (a), (b); and for increasing number of edges and fixed
number of 10k nodes (c), (d)(α = 0.3).

III. EXPERIMENTAL EVALUATION

We use two real world networks for experimentation. The
DBLP co-author network consists of collaboration links be-
tween scientific authors based on joint papers. Another large
scale network we evaluate contains a three-million-user sample
of the Flickr social graph. We infer a second Flickr network
layer based on common photo favorite bookmarks of users.

We measure kNN’s pruning power in terms of the average
fraction of edges in the explored network, adjacent to nodes
in the active set K. We also report average wall-clock exe-
cution time. Details on the datasets, experimental setup and
experimentation with composite networks are available in the
technical report [3].

5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5x 10
−3

k

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(a) DBLP pruning

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

T
im

e(
s)

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(b) DBLP running time

5 10 15 20 25 30
5

5.5

6

6.5

7x 10
−3

k

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(c) Flickr pruning

5 10 15 20 25 30
6

8

10

12

14

16

18

k

T
im

e(
s)

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(d) Flickr running time

Fig. 2. Average pruning power (a), (c) and online running time (b), (d) for
DBLP and Flickr

Figures 1(a) and 1(b) present the scalability of kNN for
increasing number of nodes, while keeping the average degree
in a synthetic network fixed to 6. The expected growth
behavior of scale-free networks is in line with this experiment,
since such graphs are typically characterized by a large number
of small-degree nodes and a small number of high-degree
ones. The size of the kNN-sufficient active subnetwork K
remains constant for increasing network sizes. The exact
stationary distribution (denoted Full 1(b)) for 100 thousand
nodes network takes close to 9 minutes to compute, while our
algorithm answers kNN queries for k up to 30 in a tenth of a
second, achieving three orders of magnitude improvement.

We evaluate the scalability of our approach for a single
synthetic network as it becomes denser (Fig. 1(c), 1(d)). We
fix the number of nodes to 10k and increase the total number
of edges. The average size of the active edge set K is 6% for
80k edges, but increases to more than half of all edges when
the average degree reaches 20. Note that 10k nodes and 200k
edges corresponds to a dense scenario in which computing the
exact EI in the whole network takes 50s (trace Full in 1(d)).

Our performance evaluation on real-world networks is pre-
sented in Fig. 2. We achieve sub-second search time in DBLP
for values of k up to 30, while using less than 0.2% of the
network edges. The actual EI in the whole network takes more
than 150s to compute. The top neighbor search for the Flickr
friendship graph takes 7 seconds on average, while pruning
more than 99.4% of the network edges for α ≥ 0.3. The
increased complexity, compared to the DBLP graph is due to
the higher density and bigger size of Flickr.

REFERENCES

[1] R. Andersen, F. Chung, and K. Lang. Local Graph Partitioning using
PageRank Vectors. FOCS, pages 475–486, 2006.

[2] A.-L. Barabasi. Linked: the new science of networks. Perseus Publishing,
2002.

[3] P. Bogdanov and A. K. Singh. Fast nearest neighbors in large and
composite networks. Technical Report, UC Santa Barbara, 2010.

14

Connectors, Mavens, Salesmen and Translators of
the Blogosphere

Ceren Budak, Divyakant Agrawal, Amr El Abbadi
Department of Computer Science

University of California, Santa Barbara
{cbudak, agrawal, amr}@cs.ucsb.edu

I. INTRODUCTION

Choosing the right set of people to first influence on a new
idea to maximize the spread of influence in social networks is
a computationally expensive problem. Lately there have been
various optimization algorithms and models of communication
introduced to tackle that problem. However, the scalability
issues, the validity of these models and their robustness to
small errors in the parameters of the models are unanswered
problems that warrant the need to identify simpler methods to
serve the same purpose. In a recent work, Gladwell identifies
three types of important people that he claims make an idea
tip and uses a small number of success cases such as the
sudden popularity of the Hush Puppies to support his ideas.
We investigate the possible effectiveness of the three heuristics
introduced in [2], as well as another heuristic that we call
translators in a much larger scale.

II. THE LAW OF THE FEW

A. Preliminaries

A social network can be modeled as a directed graph G =
(N,E) consisting of nodes N and edges E. The historical data
H of the set of cascades in G is represented as a set H =
{c1, c2, ..., cm} where ci is an ordered list of nodes nj s.t.
nj ∈ N where the nodes are ordered w.r.t. the time they adopt
or advocate cascade ci. We denote the first time nj appears
on the list of ci as the time it adopted cascade ci and all the
occurrences of nj in ci as the times it advocates cascade ci.
We also denote the time nj adopts ci as ti,j and this refers to
the index of first occurrence of nj in ci.

B. Mavens, Connectors, Salesmen and Translators

1) Connectors: Connector, translated into a graph, is
a node that has high degree centrality. W.l.o.g. let
〈n1, n2, n3, ..., nn〉 denote the list of all the nodes in N
ordered by the number of their outgoing edges. The top-k
Connectors list CONk consists of nodes 〈n1, n2, n3, ..., nk〉.

2) Mavens: The word “maven” comes from Yiddish and
means one who accumulates knowledge. According to Glad-
well mavens: 1) seek new knowledge, 2) cannot help but
help others and thus share the knowledge they acquire and
3) an individual is very likely to believe the correctness and
importance of this piece of information provided by a maven.
Translating those features into graph theory, we define Mavens

as those that start a large number of cascades and have high
influence on their neighbors.

In order to locate mavens in a graph G, we first define
influence formally. Infi,j , influence of ni on nj is the ratio of
the number of cascades ni successfully activated nj to all the
cascades ni tried activating nj . Infi,j =

Successi,j
Successi,j+Faili,j

where
Successi,j = |{ck|ni ∈ ck ∧ nj ∈ ck ∧ tk,i ≤ tk,j}| and Faili,j =

|{ck|ni ∈ ck ∧ nj /∈ ck}|. Given this definition of node-to-node
influence, the influence set of a node ni can be defined as
InfSeti = {nj |ei,j ∈ E ∧ Infi,j ! =⊥} and the aggregate influence
of a node ni as: Inf(ni) =

X
nj∈InfSeti

Infi,j/ |{InfSeti}|W.l.o.g.

let CM = 〈n1, n2, n3, ..., nn〉 denote N ordered by this
measure. We define the set Candidate Mavens as the first
dn/ke nodes in list CM , i.e. the top 100/k-percentile local
influentials.

We then further filter the list CM to only include those
nodes that are original sources of information. For a cascade
ci, let nj denote the first blog in the list ci. We call nj

the creator of cascade ci. The maven score of a node nj

can be computed as: MS(nj) = |{ck|tk,j = 1}| W.l.o.g.
let the list CM re-sorted using this score consist of nodes〈
n1′, n2′, n3′, ..., ndn/ke′

〉
. The top-k Mavens list Mk consists

of nodes 〈n1′, n2′, n3′, ..., nk′〉.
3) Salesmen: A salesman is a person with high charisma

who can sell ideas to almost anyone since he never gives up
[2]. We capture the notion of a salesman as having a large
number of trials to activate one’s neighbors per cascade. We
compute the salesman score of each node as: SalesScore(ni) =X
ck,s.t.ni∈ck

SalesScorei,k/ |{ck|ni ∈ ck}| where SalesScorei,k is

defined as the number of times ni appears in list ck. W.l.o.g. let
〈n1, n2, n3, ..., nn〉 denote N ordered by SalesScore(.). The
top-k Salesmen list Sk consists of nodes 〈n1, n2, n3, ..., nk〉.

4) Translators: We also study another class of actors we
call translators, those that act as bridges among different
communities and therefore have the power of changing the
context in which to present an idea. We use an overlapping
community detection algorithm [1] to discover the commu-
nities for which we then seek to find the translators. We
believe static properties such as the sole existence of links
is not enough to define what makes a community and claim
that existence of flow of influence between nodes is a better
indication of community and therefore use the cascade history
H to detect communities. The nodes that are a part of the same

15

cascade influence each other and the fact that they belong to
the same cascade also indicates similar interests.

The community detection algorithm used [1] consists of two
parts: an initialization phase which creates seed clusters; and
an improvement phase which repeatedly scans the nodes in
order to improve the current clusters until reaching a locally
optimal collection of clusters. The density metric we use is
based on the co-occurrences of nodes in cascades. To this end,
we construct a hashtable T to keep track of the co-occurrences
of nodes in cascades. The keys in T are of the form (ni, nj).
Let VT,i,j denote the value of the key (ni, nj) in T , i.e.
the number of cascades that ni and nj both advocated. The
density metric was chosen as Wai, called the average influence,
which is defined for a set of nodes Setk as: Wai(Setk) =X
ni∈Setk

X
nj∈Setk

VT,i,j/ |Setk| This will assign a high density to a

set of nodes that occur frequently in the same cascade and will
also avoid assigning too many nodes to one set by offsetting
the weight by the number of nodes in the cascade. Having
discovered communities this way, the next step is to detect the
translators between communities. Let the set of communities
detected by employing the algorithm presented in [1] and using
the density metric Wai be {Set1, Set2, ..., Setm}. We simply
define translator score of a node as: TranslatorScore(ni) =

|{Setj |ni ∈ Setj}| W.l.o.g. let 〈n1, n2, n3, ..., nn〉 denote N or-
dered by TranslatorScore(.). The top-k Translators list Bk

consists of nodes 〈n1, n2, n3, ..., nk〉.

C. Law of the Few in the Blogosphere

We used the August-October 2008 Memetracker data that
contains timestamped phrase and link information for news
media articles and blog posts from different blogs and news
websites. The data set consists of 53,744,349 posts and
2,115,449 sources of information. 819,368 of those sources
information are blogs. We use methods similar to the ones
presented in [3] to extract cascade information from linking
behavior in the blogosphere and discover 744,189 cascades.
Using the methods formalized in Section II-B, we identify the
mavens, salesmen, connectors and translators of the blogo-
sphere and study their “possible” effect on the effectiveness
of cascades. We loosely use the term “possible effect” to
refer to high positive correlation that does not guarantee but
indicate possible causality. We first analyzed top-10 cascades
and observed that almost all started from a connector and
involved a salesman and translator.

Although it is temping to suggest, using these findings, that
starting a cascade from a connector and reaching out to a
translator or salesman will “guarantee” a successful cascade,
this would be an overly simplified conclusion. Therefore, we
also study the success of cascades that involve the four actors
to investigate if these cascades achieve better than expected
success. Figure 1 shows some of our findings and presents
the cumulative distribution function (CDF) of the size of
cascades. The X-axis represents the cascade size whereas the
Y-axis represents the ratio of cascades that have at least that
many blogs in it in log scale. Consider the y values on the

Fig. 1. Comparison of All Actors

dotted vertical line in Figure 1. These values can be used
to qualitatively compare how “possibly” effective the actors
are in creating cascades of size >= 50. Cascades involving
any of the four actors have better performance than expected
(the lowest y value). Cascades that start from a maven and
have a connector as intermediary have the best performance.
Salesmen and translators provide the next best performance,
followed by the mavens and connectors respectively. We also
compared the success of cascades that start from one of
these actors to ones that involve them as intermediaries and
observed that the latter is more likely to be several orders of
magnitude successful. In a different set of experiments, we
seek to answer the question: “Do these actors become part
of cascades because they are already successful or do the
cascades become more successful because of the involvement
of those actors?” Our findings suggest that the latter is the
case. We omit the details due to space limitations.

III. CONCLUSION

In this work, we formally defined four types of actors are
shown to have high correlation with success of information
cascades in the blogosphere. We also showed that cascades
that involve these actors as intermediaries rather than starters
are also more likely to be successful and the “possible” effect
these actors have in combination is several magnitudes larger
than in isolation. These findings can be used to instrument new
and scalable algorithms for influence maximization in social
networks or to augment current models of communication to
capture the observed phenomena.

REFERENCES

[1] J. Baumes, M. Goldberg, and M. Magdon-Ismail. Efficient identification
of overlapping communities. In ISI, pages 27–36, 2005.

[2] M. Gladwell. The Tipping Point: How Little Things Can Make a Big
Difference. Back Bay Books, January 2002.

[3] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst.
Cascading behavior in large blog graphs: Patterns and a model. In SDM,
2007.

16

Are BGP Routers Open To Attack?
An Experiment

Ludovico Cavedon Christopher Kruegel Giovanni Vigna
Computer Security Lab, Department of Computer Science

University of California, Santa Barbara
{cavedon, chris, vigna}@cs.ucsb.edu

Abstract—The BGP protocol is at the core of the routing
infrastructure of the Internet. Across years, BGP has proved
to be very stable for its purpose. However, there have been
some catastrophic incidents in the past, due to relatively simple
router misconfigurations. In addition, unused network addresses
are being silently stolen for spamming purposes. In this work,
we perform a large-scale study to explore the validity of the
hypothesis that it is possible to mount attacks against the BGP
infrastructure without already having the control of a “trusted”
BGP router. Even though we found no real immediate threat, we
observed a large number of BGP routers that are available to
engage in BGP communication, exposing themselves to potential
Denial-of-Service attacks.

I. INTRODUCTION AND RELATED WORK

The Border Gateway Protocol (BGP, [1]) is the routing pro-
tocol at the core of the Internet. BGP is employed to perform
routing decision between Autonomous Systems (ASes), which
are separate administrative domains. Directly connected Au-
tonomous Systems establish peering relationships. A peering
relationship implies full trust: one router will accept and use
for routing any network prefix advertised by its peer routers
(unless administratively forbidden).

This full trust between peers is one of the weaknesses of
the protocol. In fact, unconditional acceptance and propagation
of routing information coming from other peers might render
the whole Internet routing stability vulnerable to malicious,
compromised, or just misconfigured BGP routers. According
to Mahajan et al. [2], BGP misconfiguration is quite common
(up to 1% of the global BGP table entries), although only 4%
of these misconfigured announcements result in disrupted con-
nectivity. Nevertheless, wrongly advertised prefixes sometimes
gave place to well-known catastrophic routing incidents ([3],
[4]). In addition, an AS might generate malicious BGP prefix
advertisements in order to hijack some IP addresses and use
them as not-yet-blacklisted sources of spam ([5], [6]).

Previous literature has been investigating possible areas of
attack against the BGP protocol ([7], [8], [9]). Much work has
focused on finding solutions to the above-mentioned attacks.
For example S-BGP ([10]), soBGP ([11]), and IRV ([12]) are
BGP extensions aiming at authenticating prefix origins and
updates. However, most of the proposed solutions imply a
heavier load on the CPU and memory of routers in order to
perform cryptographic operations. Moreover, changes to the
protocol need to be backward compatible, as it not possible

to replace all the routers software at once. For these reasons,
adoption of the defense techniques proposed so far has been
extremely slow.

Almost all of the successful attacks against BGP considered
in the literature require the attacker to have control of a BGP
router. This condition, however, is not easy to achieve and
maintain, while having a malicious behavior. However, there
is an unanswered question: Is it possible to mount attacks in
order to disrupt inter-domain routing without already having
the control of a “legitimate” BGP router? In this work, we
perform a large-scale study to explore the validity of this
hypothesis.

First, we tried to identify how many BGP speakers were
reachable on the Internet, by performing a SYN scan for TCP
port 179 over a very large part of the Internet address space
(about 73%), in order to identify processes listening on that
TCP port. Clearly, there is no implication that those hosts were
BGP speaker. Restricted to this subset of IP addresses, two
additional scans went further in the connection negotiation,
aiming at detecting whether the counterpart was willing to
continue after a 3-way handshake and even establish a BGP
session.

II. SCANNING THE INTERNET FOR BGP ROUTERS

Scanning the whole Internet address space is an activity that
poses some challenges by itself. The number of IP addresses
to probe is about 3.7 billions, which means that in order to
complete the scan in 2 weeks, with maximum 1 retry per IP
address, we need a constant outgoing packet rate of 6,000 SYN
packets per second. Such activity is very noisy, both from the
side of the scanner’s ISP and the side of the ASes receiving the
scan probes. In particular, the port 179 is notoriously a very
low traffic port, and, independently from how slowly the scan
is performed, a whole network sweep on that port is going
to be easily detected. Moreover, scanning activity is usually
identified as malicious, and sometimes finds a hostile response
from network administrators. For this reason, such a large-
scale scanning constitutes a one-shot experiment. We took a
number of precautions in order to reduce the impact of our
scanning activity on remote networks, and we tried to address
in advance potential complaints about our scanning. During
our scanning activity we received complaints from 10 different
institutions, asking to be excluded from further scans. Only
one other institution (AT&T) contacted us letting us know that

17

they were aware of our activity and that they were interested
in hearing about the details of our experiment.

Once we collected the list of IP addresses answering to our
SYN packets, we tried to engage in a BGP exchange with
them.

III. RESULTS

During our initial TCP SYN scan (carried on between
December 2008 and January 2009) about 2.2 million hosts
were reported to have the TCP port 179 open (i.e., 0.8‰
of the scanned IP addresses). This pool of potential BGP
routers was then probed with our Python BGP speaker in
February 2009 and again in February 2010 (Table I). Quite
unexpectedly, 35% of these hosts no longer responded to
our BGP connection requests. The likely explanation for the
phenomenon is the triggering of rate-limiting mechanisms
in the target networks. In fact we found that 90% of the
timing-out IP addresses were belonging to less than 1% of
/16 networks in the scanned address space. Such networks are
probably honeypots, employed to monitor malicious activity
on the Internet.

After send event/response n. of IPs % of probed % of conn.
SYN timeout 1026798 47.40 -

TCP RST 55223 2.55 -
UNREACH 142257 6.57 -

SYN TCP RST 24484 1.13 2.60
+ACK TCP FIN 402381 18.57 42.71

BGP NOTIF
CEASE 8787 0.41 0.93

non-BGP data 297 0.01 0.03
BGP timeout 441130 20.36 46.83

OPEN TCP FIN 51631 2.38 5.48
BGP NOTIF

OPEN 7843 0.36 0.83
BGP OPEN

& UPDATE 5 <0.01 <0.01
non-BGP data 4994 0.23 0.53

Table I
RESULTS OF FEBRUARY 2010 SCAN. THE FIRST COLUMN INDICATES THE

LAST PACKET WE SENT DURING OUR PROBE, THE SECOND COLUMN
INDICATES THE LAST PACKET RECEIVED FROM THE REMOTE HOST (OR

THE FIRING OF A TIMEOUT IN CASE NO DATA WAS RECEIVED). THE
FOURTH COLUMN INDICATES THE PERCENTAGE OVER TOTAL PROBED IP

ADDRESSES, WHILE IN THE LAST COLUMN THE PERCENTAGE IS
COMPUTED OVER THE HOSTS THAT COMPLETED THE TCP 3-WAY

HANDSHAKE.

Of the hosts that completed the TCP 3-way handshake, 45%
closed or reset the connection right away. This behavior is
probably determined by the interaction between a user space
process and the router kernel for the management of the TCP
connection. Let us consider the case of a BGP speaker process
running in user space. The 3-way handshake is managed by
the kernel, which is not aware of the IP addresses of the
configured peers (unless some ad-hoc firewall rules have been
setup). Therefore the TCP handshake always succeeds and the
relative socket is passed to the BGP process. Only at this point
the BGP process can decide to terminate the connection.

About 0.4% (7,843) of the hosts concluding the 3-way
handshake parsed our OPEN message, but declined the BGP

peering session with a NOTIFICATION OPEN Error message.
Almost all these BGP speakers also sent us an OPEN message,
therefore identifying themselves. They turned out to be actu-
ally only 1258 distinct routers (i.e., distinct BGP identifiers),
belonging to 318 different ASes. Among them, 3497 routers
declared themselves to be in AS numbers reserved for private
use, lowering to 192 the number of public ASes for which
BGP routers were discovered.

In addition, we found 5 routers (all of them from the
same AS) who accepted our BGP peering request and started
sending us UPDATE messages with BGP prefixes. At this
point, theoretically, we should have been able to send prefix
UPDATEs back to the BGP router. It turned out that we were
not actually dealing with some real BGP routers. However,
the owner of those BGP speakers confirmed that their security
had to be improved and sending them updates could have been
a way to overload their database server, where received BGP
updates were being stored.

IV. CONCLUSIONS

We could not find any real immediate threat. Nevertheless,
we found a large number of BGP speakers that would es-
tablish a connection with us and possibly accept some input
from us. Such routers were not required to engage in such
communication, and, in doing so, they exposed themselves to
a potential menace, as BGP is extremely sensitive to Denial-
of-Service attacks. Moreover, given the amount of trust given
to the other peers, a compromised router could seriously affect
the whole Internet routing infrastructure. For this reason, it is
very important that some equivalent of the principle of least
privilege is applied also to the acceptance of BGP connections,
shielding the routers as much as possible from potentially
malicious traffic.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4
(BGP-4),” RFC 4271 (Draft Standard), Internet Engineering Task Force,
Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4271.txt

[2] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” in SIGCOMM 2002. ACM, 2002, pp. 3–16.

[3] RIPE NCC, “YouTube Hijacking: A RIPE NCC RIS case study,” http:
//www.ripe.net/news/study-youtube-hijacking.html, 2008.

[4] V. J. Bono, “7007 Explanation and Apology,” http://www.merit.edu/mail.
archives/nanog/1997-04/msg00444.html, Apr. 1997.

[5] A. Ramachandran and N. Feamster, “Understanding the network-level
behavior of spammers,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4, p. 302, 2006.

[6] C. McArthur and M. Guirguis, “Stealthy IP Prefix Hijacking: Dont Bite
Off More Than You Can Chew,” in Proc. ACM SIGCOMM, 2008.

[7] O. Nordström and C. Dovrolis, “Beware of BGP attacks,” ACM SIG-
COMM Computer Communication Review, vol. 34, no. 2, pp. 1–8, 2004.

[8] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of BGP
security issues and solutions,” AT&T Labs Research, 2008.

[9] A. Pilosov and T. Kapela, “Stealing The Internet,” DefCon 16, 2009.
[10] S. Kent, C. Lynn, and K. Seo, “Design and analysis of the secure border

gateway protocol (S-BGP),” Proc. of DISCEX00, 2000.
[11] N. James, “Extensions to BGP to support secure origin BGP (sobgp),”

Network Working Group, Cisco Systems, 2002.
[12] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and

A. Rubin, “Working around BGP: An incremental approach to improving
security and accuracy of interdomain routing,” in Proc. NDSS, vol. 3,
2003.

18

Hacking for Fun and Education: Organizing the
UCSB iCTF

Bryce Boe, Nicholas Childers, Giovanni Vigna
Security Group, Department of Computer Science

University of California, Santa Barbara
{bboe, voltaire, vigna}@cs.ucsb.edu

I. INTRODUCTION

Computer security competitions and challenges are a way to
foster innovation and educate students in a highly-motivating
setting. In recent years, a number of different security com-
petitions were carried out, each with different characteristics,
configurations, and goals. From 2003 to 2007, we, the Security
Group at UCSB, carried out a number of live security exercises
involving dozens of universities from around the world. These
exercises were designed as “traditional” Capture The Flag
(CTF) competitions, where teams both attacked and defended
a virtualized host that provided several vulnerable services. In
2008 and 2009, we introduced two completely new types of
competition: a security “treasure hunt” and a botnet-inspired
competition. These two competitions represent the largest live
security exercises ever attempted and involved hundreds of
students across the globe. In this paper, we overview security
competitions and detail our 2009 competition with the goal of
highlighting their usefulness as a security education tool.

II. SECURITY COMPETITIONS

An important aspect of computer security education is
hands-on experience. Despite the importance of foundational
security classes that focus on more abstract concepts in
security, Internet security often requires substantial hands-on
training in order to be mastered. Therefore, it is important to
improve security training by providing novel approaches that
complement the existing educational tools normally used in
graduate and undergraduate courses on computer security.

A class of these tools is represented by security compe-
titions. In these competitions, a number of teams compete
against each other in some security-related challenge. As an
educational tool, these competitions have both advantages
and disadvantages. A notable advantage is that competition
motivates students to go beyond the normal “call of duty” and
explore original approaches, sometimes requiring the develop-
ment of novel tools. Another advantage is that students usually
operate against a determined opponent while under strict time
constraints and with limited resources thus mimicking a more
realistic situation than one can reproduce using paper-and-
pencil Gedanken experiments. Unfortunately, security compe-
titions have one major disadvantage: they usually require a
large amount of resources to design, develop, and run [1], [2].

The best-known online security competition is the DefCon
CTF, or Capture the Flag, which is held annually at the DefCon

convention. At DefCon 2010, nine teams received an identical
copy of a virtualized system containing a number of vulnerable
services. Their goal was to secure this set of services whilst
concurrently compromising other teams’ services allowing
them to “capture the flag” and score points [3]. Despite
DefCon’s nonspecific focus on security education, the com-
petition inspired several editions of the UCSB International
Capture The Flag (iCTF). One significant difference between
the UCSB iCTF and DefCon’s CTF is that the iCTF involves
educational institutions spread across the world, whereas the
DefCon CTF allows only locally-connected teams. DefCon
therefore requires the physical co-location of the contestants
thus constraining participation to a limited number of teams.

III. THE UCSB ICTF

Annually, since 2003, we organized an international, wide-
area security competition involving dozens of teams through-
out the world. The goal of these live exercises was to test
the participants’ security skills in a time-constrained setting.
Our competitions were designed as educational tools, and were
open to educational institutions only. From 2003 to 2007, each
edition of the competition followed the traditional CTF format,
where remote teams competed against each other by leveraging
both attack and defense techniques. Subsequent editions of
the competition grew in the number of teams participating
and in the sophistication of the exploitable services. The
design, however, remained substantially unchanged, and hence
tended to favor iCTF veterans. Therefore, in both 2008 and
2009, we took a different approach in designing the iCTF.
We constructed two unique attack-based competitions that
mimicked real world scenarios. Here we will focus only on
the 2009 competition.
The 2009 iCTF. The 2009 iCTF mimicked the world of
malware and accordingly incorporated many features unique
to the physiology of modern botnets. In this iCTF edition, each
team played the role of an evil botmaster, competing against
other botmasters for the control of a large number of simulated
users. This iCTF was the largest security competition to date,
with 56 teams representing more than 800 participants.

Figure 1 depicts the 2009 game play. Scripts simulated users
that were to be compromised and controlled by the partici-
pants. Each simulated user followed a cyclical pattern: First the
user logged into their Robabank account using one of twelve

19

User User 

op(onal publishing $$$ 

Goollable 

Team Website 

Robabank 

PayPerNews 
periodic indexing 

step 1 

step 2 

step 3 

step 4 

Mothership 
“C&C” 

UCSBank 

transfer 

$$$ 

Fig. 1. 2009 competition overview.

vulnerable browsers and consequently retrieved an authentica-
tion cookie. The user then visited the PayPerNews news site
and randomly extracted a keyword from the site’s content.
Teams had the ability to influence PayPerNews’s content by
publishing for a fixed cost. At this point, the user searched
for the keyword using the Goollable search engine. Goollable
routinely crawled each team’s editable webpage thus providing
teams with the ability to influence their search ranking through
search engine optimization techniques. Finally, one of the
links returned by Goollable was chosen and visited by the
user’s browser according to a Pareto distribution. At this
point, the browser, and consequently the user, were possibly
compromised by a drive-by-download attack delivered by the
team’s website.

The goal of each participant was to lure a user to a web site
under the participant’s control, perform a drive-by-download
attack against the user’s browser, and take complete control
of the user. Once the user was compromised, a team had
to do two things: i) transfer the money from the user’s
Robabank account to their own UCSBank account in order
to accumulate “money points,” and ii) establish a connection
from the user to a remote host, called the Mothership, on
which to send information identifying the compromising team.
A team gained “botnet points” by performing this action. This
last step was introduced to generate traffic patterns resembling
the interaction of bots with Command-and-Control (C&C)
hosts in real botnets. Finally, solving side challenges offered
teams a third way to gather points. Challenges varied in type
(e.g., binary reversing, trivia, forensics) and difficulty. Teams
were awarded “leetness points” for solving a challenge.

This rather complex system of inter-operating components
was a central aspect of the 2009 iCTF. That is, instead of just
concentrating on single services or single aspects of the game,
the participants were forced to understand the system as a
whole. Even though this aspect generated some frustration with
the participants who were used to the straightforward designs
of previous competitions, the purpose of the complexity was
to educate the students on understanding security as a property
of complex systems and not just as a property of single
components.

IV. DISCUSSION

Over the years of hosting the iCTF we have learned a few
lessons. One in particular is that too much novelty can hurt
the overall competition. As opposed to the straightforwardness
of a traditional CTF, the 2009 iCTF competition structure was
vastly more complicated. Not only did teams have to reverse-
engineer the browser software, they also had to perform
search engine optimization to get users to visit their sites.
Moreover, once they understood how to capture users, they
had to figure out how the banking system worked, as well as
how the botnet Mothership could be used to score points. In
total, there were three different kinds of points, with a fairly
complex relationship between them that many participants
found confusing.

A final thought about security competitions is: are they
worth the effort? Preparing all the editions of the iCTF took an
enormous amount of time and resources. Therefore, it is under-
standable to wonder what are the benefits. The fact that many
similar competitions surfaced after the introduction of the
UCSB iCTF shows that there is interest for these competitions.
Furthermore, as evidenced by the feedback received following
the 2009 competition, our security competitions foster group
work and creative thinking, thus it is our firm belief that live
exercises are a useful tool to support the security education of
students.1

REFERENCES

[1] G. Vigna, “Teaching Hands-On Network Security: Testbeds and Live
Exercises,” Journal of Information Warfare, vol. 3, no. 2, pp. 8–25, 2003.

[2] ——, “Teaching Network Security Through Live Exercises,” in Pro-
ceedings of the Third Annual World Conference on Information Security
Education (WISE 3), C. Irvine and H. Armstrong, Eds. Monterey, CA:
Kluwer Academic Publishers, June 2003, pp. 3–18.

[3] C. Cowan, S. Arnold, S. Beattie, C. Wright, and J. Viega, “Defcon Capture
the Flag: defending vulnerable code from intense attack,” in Proceedings
of the DARPA Information Survivability Conference and Exposition, April
2003.

[4] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova, M. Egele, and
G. Vigna, “Organizing large scale hacking competitions,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, ser. Lecture Notes
in Computer Science, C. Kreibich and M. Jahnke, Eds. Springer Berlin
/ Heidelberg, 2010, vol. 6201, pp. 132–152.

1For a more in depth discussion of the UCSB iCTF please read our paper,
“Organizing Large Scale Hacking Competitions” [4].

20

DYMO: Linking Network Traffic to Application
Code

Bob Gilbert, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna
Department of Computer Science

University of California, Santa Barbara
{rgilbert, kemm, chris, vigna}@cs.ucsb.edu

I. INTRODUCTION

Most current malware programs rely heavily on the network
to carry out their nefarious tasks. For example, malicious
software scans for and exploits vulnerable services on remote
hosts, sends unsolicited spam mails, leaks data to drop zones,
or connects to command and control (C&C) servers for fresh
commands and status updates.

Unfortunately, when monitoring the network, it is often
difficult to distinguish connections that are established by a
malware program from those that are initiated by legitimate
applications. One problem is that both legitimate and malicious
programs make use of the same application level protocols,
such as HTTP or SMTP. Thus, there is often not enough
context available at the network level to understand if a con-
nection is desirable. For example, when observing an SMTP
connection over which a mail is transmitted, it is difficult to
determine whether the user actually composed this mail, or if
rather it is spam sent by a bot.

To increase the information available about network con-
nections and to enable better security decisions at the network
level, it would be valuable to know which application at the
end host is responsible for a certain connection (or packet).
That is, one would like to have more context with regard
to the origin of each packet on the wire. Such provenance
information can be used by network elements (such as routers
and firewalls) as well as network services to enforce security
policies. For example, a mail server can decide to increase the
spam score for mails from unknown mail clients, or a firewall
can decide to block all network traffic that is not sent by well-
known applications.

In this paper, we propose DYMO, a system that provides
provenance information to all outgoing network traffic. More
precisely, we introduce a host-based component that marks
each TCP connection and UDP packet with an identity label
that corresponds to the application code that has generated
the traffic. Whenever a process opens a network connection,
our system injects the identity label of this process into the
connection. The label is injected into the option field of the IP
header, therefore it can be easily inspected by both network
devices and the host that receives the traffic.

We have implemented our system for Windows XP and
tested it on several hardware platforms (a “bare metal” in-
stallation and two virtualized environments). Our experiments

show that labels are the same when the same application is
run on different systems. Moreover, when malware attempts
to inject code into a legitimate application, the label for this
application is correctly updated.

II. DYMO: DESIGN AND IMPLEMENTATION

In this section, we describe the two main components of
the system. First, in Section II-A, we discuss how our system
tracks the executable regions of a process and uses this infor-
mation to compute identity labels. Then, in Section II-B, we
discuss how labels are injected into outgoing network traffic.
DYMO runs entirely in the kernel, monitoring all processes and
intercepting all outbound network traffic for label attribution.
This architecture allows DYMO to track processes effectively
and transparently.

A. Identity Label Generation

An identity label encapsulates all memory regions (sets of
consecutive memory pages) of a process’ address space that
are executed. Since each executable memory region is self
contained and can be modified independently, DYMO tracks
them individually through region labels. While DYMO tracks
both image code segments and allocated memory regions
marked executable, here we only describe the former.

Region labels are constructed using Huffman coding. A
region’s variable-length code is retrieved from a precomputed
database that maps a cryptographic hash (MD5) of the region
to the corresponding code. An identity label is generated by
concatenating the individual region labels.

It is easiest to understand the operation of DYMO by walking
through the loading and execution of an application. A process
is started through an API call (e.g., CreateProcess). After
the initial thread is created, but before execution begins, DYMO
is notified through a process creation callback registered with
the operating system. At this point, DYMO constructs a process
profile to track the process throughout its execution.

Just before the initial thread starts executing, an image
loading callback (also registered with the OS) is invoked to
notify DYMO that the application’s image (the .exe file) and
the Ntdll.dll library have begun loading. DYMO locates
the code region (segment) for each of these images in the
process’ virtual address space and modifies the page protection
to remove execute access from the region. DYMO then adds
the original protection (PAGE_EXECUTE_READ), the new

21

protection (PAGE_READONLY), the region start address, and
the region size to the process profile.
Ntdll.dll is responsible for loading all other required

DLL images into the process, so the initial thread is set
to execute an initialization routine in the Ntdll.dll code
segment. Since DYMO has removed execute access from the
Ntdll.dll code segment, the execution attempt raises a
DEP/NX [1] exception, which results in a control transfer to
the page fault handler. DYMO hooks the page fault handler,
so it first gets an opportunity to inspect the fault. DYMO
determines that this is the DEP/NX violation that it induced,
and it uses the process profile to match the faulting address
to the Ntdll.dll code segment. Using the memory region
information in the process profile, DYMO retrieves the region
label that identifies Ntdll.dll.

The region label is then added to the process pro-
file. Finally, DYMO restores the original page protection
(PAGE_EXECUTE_READ) to the faulting region and dismisses
the page fault, which allows execution to continue in the
Ntdll.dll initialization routine.
Ntdll.dll consults the .exe image file’s Import Ad-

dress Table (IAT) to look for required DLLs to load (and
recursively consults these DLLs for imports), and maps them
into memory. As before, DYMO is notified of each of these
image loads through a callback, and it carries out the same
processing described above for each library. The callback
is also invoked when DLLs are dynamically loaded during
runtime, which enables DYMO to process them as well. After
loading, each DLL will attempt to execute its entry point, a
DEP/NX exception will be raised, and DYMO will add a region
label for each DLL to the process profile.

B. Identity Label Injection

DYMO intercepts outbound network traffic to inject all TCP
connections and UDP packets with the identity label of the
originating process. DYMO accomplishes this by injecting a
custom IP option into the IP header of each packet, which
makes it easy for network devices or hosts along the path to
analyze the label.

The injector, a component that is positioned between the
TCP/IP transport driver and the network adapter, does the
injection to ensure that all traffic is labeled. A second compo-
nent, called the broker, obtains the appropriate identity label
for the injector.

1) The Injector: The injector component is implemented as
a Network Driver Interface Specification (NDIS) Intermediate
Filter driver [2]. It sits between the TCP/IP Transport Provider
(Tcpip.sys) and the network adapter, which allows it to
intercept all IP network traffic leaving the host. Due to the
NDIS architecture, the injection component executes in an
arbitrary thread context. Practically speaking, this means that
the injector cannot reliably determine on its own which process
is responsible for a particular network packet. To solve this
problem, the injector enlists the help of a broker component
(discussed below).

When a TCP or UDP packet is passed down to the injector,
it inspects the packet headers and builds a connection ID
consisting of the source and destination IP addresses, the
source and destination ports, and the protocol. The injector
queries the broker with the connection ID and receives back a
process identity label. The label is injected into the outbound
packet as a custom IP option, the appropriate IP headers are
updated (e.g., header length and checksum), and the packet is
forwarded down to the network adapter for delivery.

2) The Broker: The broker component assists the injector
in obtaining appropriate identity labels. The broker has an
interface to receive a connection ID from the injector and
maps it to the ascribed process. It then obtains the label
associated with the given process and returns the label back
to the injector.

The broker is implemented as a Transport Driver Interface
(TDI) Filter driver [2]. It resides just above Tcpip.sys in
the transport protocol stack and filters the TDI interfaces used
to send TCP and UDP packets. Through these interfaces, the
broker is notified when a process sends network traffic, and
it parses the request for its connection ID. Since the broker
executes in the context of the process sending the network
traffic, it can maintain a table mapping connection IDs to
the corresponding processes. As described above, the injector
queries the broker, submitting a connection ID that is resolved
into an identity label.

III. CONCLUSIONS

This paper introduces DYMO, a system that labels network
packets with information that allows one to determine which
code is responsible for the generation of the traffic. The system
uses a host-based monitoring component to make sure that
the code associated with the execution of an application can
be reliably tracked. By associating traffic to application code
in a trustworthy fashion, it is possible to enforce a number
of application-specific network policies, such as application
white-listing or providing different levels of services to dif-
ferent applications. We have developed a prototype of our
approach for the Windows XP operating system, and we have
evaluated it in a number of realistic settings. The results
show that the system is able to reliably track the code base
of an application while incurring an acceptable performance
overhead.

REFERENCES

[1] Microsoft Corporation, “A detailed description of the Data Execution
Prevention (DEP) feature,” http://support.microsoft.com/kb/875352.

[2] ——, “WDK and Developer Tools,” http://www.microsoft.com/whdc/
devtools/wdk/default.mspx.

22

Quantifying the Environmental Advantages of
Large-Scale Computing

Vlasia Anagnostopoulou, Heba Saadeldeen, Frederic T. Chong
Department of Computer Science

University of California, Santa Barbara
{vlasia, heba, chong}@cs.ucsb.edu

I. ABSTRACT

The practical advantages of pay-as-you-go, scalable com-
puting have made large-scale cloud computing services an
appealing option for many consumers. At the same time, large-
scale datacenters have attracted attention as one of the fastest
growing segments of carbon production. In this paper, we
attempt to quantify the footprint of various sizes of datacenters
in the context of two popular types of small-scale business
applications (represented by TPC-C and TPC-H). We evaluate
energy, materials and cost as systems scale, accounting for in-
frastructure, provisioning for future growth, and underutilized
resources.

II. INTRODUCTION

Large datacenter providers, like Amazon, Microsoft, Google
etc, have been quick to create a profitable model under which
they rent their machines to clients by the unit, a trend which we
have come to know as Cloud Computing. Cloud Computing
has offered new possibilities to small companies, especially
start-ups, as it allows them to harness substantial processing
power and large storage without the cost of deploying and
maintaining an actual computing system locally.

Much interest has been directed towards evaluating datacen-
ters, primarily in terms of Total Cost of Ownership (TCO),
Energy/USD, and Performance/USD ([1], [2], [3]). The pur-
pose of TCO analysis is typically to constuct or upgrade a
datacenter in such a way so that the TCO, consisting of the
capital and the operational costs, is minimized. This type of
analysis has gone a long way, since these terms are expressed
in financial terms well understood by investors. However, the
deployment and operation of a datacenter contains significant
environmental implications, which are typically ignored from
such analyses. For example, Williams [4] pointed out that the
manufacturing of a desktop computer is an order of magnitude
more intensive than many other manufactured goods, requiring
11 times its weight in fossil fuel.

In this study, we attempt to quantify the environmental
impact of datacenters of various sizes, in terms of cost,
materials and energy. We conduct our analysis under scaling
over various datacenter sizes, S(mall), M(edium), and L(arge),
in essence evaluating the effect of the economy of scale pro-
vided by Cloud Computing. We construct a realistic business
scenario which we deploy over a typical Life-Cycle (LC) of
datacenters. Our results show that the efficiency observed in
larger installations yields a lower footprint than the footprint
of smaller installations. In the following sections, we present

a short overview of the deployment of the power and cooling
equipment in datacenters, as well as our assumptions. We
then calculate the costs and amount of materials for each
deployment and conduct a comparative analysis among all
deployments.

III. BACKGROUND

In general, a typical cooling installation consists of one
or more CRAC/H (Computer Room Air-Conditioner/Handler)
units, a condenser, a chiller, and a heat exchanger. The purpose
of the CRAC/H units is to provide the IT machinery with
appropriately cold air, while removing the heat emitted from
the machines. The condenser, in turn, serves for condensing
the air into water, which the chiller cools down to a particular
temperature. The chiller is connected to a heat exhanger,
whose purpose is to exchange the heat produced by the chiller
with some medium (water, air, or a coolant).

The choice of a particular solution depends on various
factors (e.g. ambient conditions or architectural restrictions),
but in this analysis we ignore these factors and simply consider
the most efficient type of solution, which happens to be the
water based one. Also, we make an assumption based on the
fact that a relatively small server configuration (1-20 racks)
is mostly likely to be located within a large building with an
existing chilled water loop. Therefore, for all datacenter sizes
< S we assume that the CRAC units hook directly to a pre-
existing water loop.

IV. ANALYSIS

In this section, we analyze the capital (CAPEX) and the
operational (OPEX) costs for each datacenter size, and com-
pare the amount of materials used in the manufacturing of the
respective cooling and power equipment. We find that both
types of costs, in general, decrease with the datacenter size,
except for the case where we compare the CAPEX of the
individual computer rooms with that of the small datacenter
(and find that it is 10.57% smaller). The scaling of the amount
of materials, as expected, follows a similar trend with the
CAPEX cost. The largest savings occur when we migrate
from the small-sized datacenter to the large-sized one: the
CAPEX drops by 23.72%, while the reduction in the amount
of materials is 47.84%, without accounting redundancy.

A. Analysis of materials demand

In order to approximate the amount of the materials used
in the manufacturing of the units, we use the weight that is

23

provided in the product specs. We plot the scaling of the
weight with the capacity for the CRAC units. We want to
compare this graph with a graph that depicts how in theory the
weight would proportionately scale with the capacity. For our
proportional weight graph, we only double the weight when
the volume of the model changes. The actual rate of growth
is indeed much slower than the theoretical proportional rate.

We next quantify the savings in the amount of materials
for the cooling equipment (Chiller+CRAC) and power (UPS)
among the various sizes of datacenters. The only case where
a datacenter size requires more materials than the equivalent
number of individual computer rooms is when we compare
the latter with a small datacenter. This is because we assume
that the individual computer rooms are hooked to an existing
chiller of very large capacity, as it would be anticipated in
the case of the deployment of a computer room in a large
commercial building with an installed air-conditioning system.
The savings in materials from deploying the equipment in
a large datacenter as opposed to an equivalent number of
individual rooms is 47.84% when the redundancy is N, and
67.81% when the redundancy is N+1.

(a) Growth of CRAC weight with
capacity

(b) Materials demand with
datacenter-size

Fig. 1. Growth of the materials demand for the Coolind and Power equipment

B. Capital and Operational Cost Analysis
In order to evaluate the capital and production costs, we use

a formula adapted from [3]:
TCO = Cooling and Power CAPEX + Cooling and Power

OPEX,
where CAPEX is the capital investment made upfront and

depreciated over time, and OPEX is the monthly incurring
costs such as the electricity cost. Our adaptation of the formula
consisted of removing the Server components, as the server
requirements do not change across the cases, and we compare
the magnitude as opposed to taking their ratios.

We assume a life-cycle of the datacenter of 10 years. We
assume exponential growth of each of the business and e-
commerce applications, as of doubling of their requirements
every 4 years. Since during the deployment of datacenters
the cooling and power equipment are typically chosen so as
to accommodate the future and not the current requirements,
we assume that the administrators of a small computer room
will only purchase new cooling and power equipment every
4 years, while the administrators of a large facility will be

upgrading this infrastructure much more often, i.e. every 6
months. As an exception for the large facility, the chiller
is a component that should be upgraded infrequently, and
therefore, we assume that the chiller will get upgraded every
4 years. We acquired prices for the equipment using Google’s
Shopping service. We then depreciated this cost over 4 years
and added an interest rate of 8% as of [3]. By the end
of the datacenter’s lifecycle (10 years), we accumulate the
depreciated cost with the interest rate, which is the total cost
over the datacenter’s lifecycle.

In Table I, we summarize the CAPEX and OPEX costs
for all sizes. These results are normalized over the large
configuration, for direct comparison. For the CAPEX, we
observe that, except for the computer room configuration,
the CAPEX decreases with the size. The reason why the
computer room configuration costs less than the S datacenter
configuration is because of our assumption that the Computer
Room hooks to a preexisting building chiller-loop. As for the
OPEX, we see that the OPEX is inversely proportional with
the size, with the Computer Room configuration being a lot
larger than everyone else. This is due to the inefficiencies of
the various units (PDU, UPS, CRAC, and chillers), which do
not scale well and therefore cause much higher ineffeciencies
for the smaller sizes.

Size CAPEX Energy
[USD] [MWh]

Comp.Room 6,063,835 687,400
S 6,704,600 243,500
M 5,426,400 238,000
L 5,114,280 223,900

TABLE I
CAPEX AND OPEX FOR ALL SIZES

V. CONCLUSION

In this paper, we conducted a detailed comparison among
datacenters of various sizes in terms of operational and capital
cost, and over the typical Life-Cycle of the datecenter (10
years). We were particularly interested in comparing these
large configurations with individual configurations which a
single small company would deploy. Our comparison focused
on quantifying the operational cost in terms of energy, and
the capital cost in terms of cost and amount materials, and
quantifying the economies of scale of Cloud Computing.

REFERENCES

[1] C. P. et al., “Cost model for planning, development and operation of a
data center,” Jun. 2005.

[2] J. K. et al., “A simple model for determining the true total cost of
ownership for data centers,” 2006.

[3] L. Barroso and U. Hoelzle, The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines. Mark D. Hill,
University of Wisconsin, Madison, 2009.

[4] E. Williams, “Energy intensity of computer manufacturing: Hybrid as-
sessment combining process and economic inputoutput methods,” Envi-
ronmental Science and Technology, no. 3822, pp. 6166–6174, Oct. 2004.

24

A Framework for Sketch-Based Interface
Development

Jeffrey Browne
Department of Computer Science

University of California, Santa Barbara
jbrowne@cs.ucsb.edu

I. INTRODUCTION

Whether drafting a new musical composition or diagram-
ming the airflow of a room, creative tasks often draw designers
to a whiteboard. Here, users can quickly visualize and test
ideas without any commitment, which is important since often
our initial attempts fail or must be modified in some way.

Sketch-based interfaces such as a digital whiteboard, pen
digitizer, or tablet interface have the potential to greatly
expand a typical user’s experience by generating additional
information in response to the user’s drawings. For example,
when drawing digital circuit diagrams on a whiteboard, if the
board could simulate the logic represented in the drawing, then
the designer could tell much more quickly whether her idea
was a success or a failure.

Though pen-based input hardware has existed for decades,
sketch-based applications have yet to become mainstream. Part
of the reason for the lack of adoption is the high learning
curve of implementing an interesting application that uses
sketch recognition. Up to this point, programmers wanting to
build high-level recognition logic have had to begin essen-
tially from scratch. Building an application to take in and
manipulate directed graphs, for example, would require a
programmer to learn the intricacies of handwriting recognition
for labels, shape classification for nodes, and multi-stroke
input for arrows. Thus it is understandable that interesting and
complex applications utilizing sketch have largely failed in the
beginning stages.

In this paper, we discuss work that we have done to soften
the learning curve for sketch-based application programmers
by implementing a framework for sketch application develop-
ment. By using this framework, developers can compose and
build upon other previous work in order to create complex
recognition applications. We then discuss some of the chal-
lenges that motivate further research in this area.

II. FRAMEWORK DETAILS

At a high level, the framework consists of a central board
manager (board) and background recognition tasks (apps) that
communicate via annotations on strokes. As shown in figure 1,
as a user interacts with the system, it proceeds in the following
steps: first, a user draws a stroke (set of ordered points) in the
main board area, then the board notifies each app of the new
stroke. Here, each app can choose to tag a set of strokes with
an annotation. For example, if a stroke looks like an arrow,

Fig. 1. Annotations building on two strokes. An arrow app annotates the first
stroke as “Arrow” (blue) while the second stroke is annotated “Circle” (red).
Then the graph app is alerted to an “Arrow” and a “Circle” and it annotates
the two strokes together as “Graph” (green).

the “Arrow” annotation could have information about the head,
tail, and length of the arrow. Similarly to listening for strokes,
apps can also listen for annotations placed on strokes, and the
board next notifies the correct apps of the new annotation.
In the example above, after an arrow recognizer has tagged
some set of strokes as “Arrow,” the board would alert a graph
recognizer app to the new annotation. Here again, the notified
app may add annotations to some set of strokes, which will
propagate similarly.

A. Erasure

When a user makes a mistake or wants to modify a design,
he or she will often only erase some small set of strokes
instead of clearing the entire board and starting from scratch.
In order for our framework to support this, we must remove
annotations and strokes from the board in such a way that the
remaining information is semantically consistent with what is
drawn. Currently, erasure in our system works on a stroke-level
granularity, in that a user may remove entire strokes (e.g. an
entire arrow) but not parts of strokes (just the arrow’s head).

When a user erases a stroke, the system proceeds along
similar lines to a stroke’s addition. First, all apps that listen for
raw stroke input are alerted that the stroke is disappearing. It is
then up to each app to evaluate the annotations on that stroke
and determine if they are valid or not; for example, a multi-
stroke annotation for a large “Graph” should remain on the

25

board despite losing a single “Arrow” stroke. If it is no longer
valid, the app will tell the board to remove the annotation.
Then, any apps listening for that type of annotation will be
alerted to its removal, where they will evaluate the validity of
any annotations they may have added, and remove them as
needed. Thus, annotation removal propagates in a similar way
to addition.

B. App Design

Through our experience in designing and implementing
several apps for this framework, we have found that some
design patterns generalize to many applications, and we have
implemented abstract classes to support them.

The first, and most basic function apps provide is as mark-
ers, which operate much like the arrow app discussed above.
They simply analyze strokes and annotations, classifying them
according to some rules, and then add annotations depending
on the results. They do not remove any information from the
board, and are a very basic form of recognizer.

Another style of recognizer that we have seen arise several
times is a collector. These collect annotations into as few
instances as possible, given some semantic rules. For example,
a user might draw two separate graphs on the board, each
of which would have its own “Graph” annotation. If the
user then connects the two graphs via an edge, the graph
recognizer should merge the two separate “Graph” annotations
into a single instance, collecting the annotations into the single
semantic object represented.

Factories are apps that wait for a certain set of rules, and
upon matching them instantiates another app that will evaluate
additional strokes on its own. An example of this is the “tic-
tac-toe factory” which, upon recognizing the four-line hash
of a tic-tac-toe board, instantiates a new tic-tac-toe recognizer
that handles the state for that particular game.

Finally, as a way of organizing our system, we also currently
distinguish visualizer apps. These apps observe annotations
tagged to strokes, and then draw information on the board
to communicate to the user. One strength of separating the
visualizer functionality from the recognition apps is that
multiple apps could potentially tag the same annotation type
on different objects, but only one visualizer actually presents
the information to the user. This cuts down on clutter and
interface consistency issues.

III. FUTURE DIRECTIONS

Through the use of our framework, we anticipate developers
will be able to tackle many of the more interesting problems
in sketch-based interaction rather than reimplementing the
same basic functionality repeatedly. In the future, we plan
to evaluate the difficult areas of programming sketch-based
interfaces more formally by studying how developers approach
simple and complex problems in the area.

We also plan to study how users of sketch-based interfaces
believe they should function. App designers will have to face
many complicated decisions regarding user expectations and
intuitive behavior, and our analysis should yield some practical

suggestions. For example, erasure poses interesting problems
with temporal ordering. If a user were playing a game of
tic-tac-toe with a computer-controlled opponent, and all of a
sudden erased his third “X,” how should the system respond?
The game could immediately be forfeit, or the user could be
granted an extra turn, or the app could draw the strokes back
in, effectively disallowing erasure.

A user could also erase a line making up the board itself.
One option would be to garbage collect the state associated
with the game, leaving other user strokes on the board (they
may be part of some other annotations). Then if the user draws
that line back in, the system could react in many ways, maybe
by replaying the old moves, ignoring them altogether, etc.
Our evaluation of what users actually expect in these sorts
of situations will help us determine which solutions are most
intuitive in the general case.

IV. CONCLUSION

The work presented here is a stepping stone to easing the
development of sketch-based systems by allowing program-
mers to build on each others’ code. Though this serves to
organize existing code, app developers still have a long way
to go in terms of accurate recognizers, intuitive feedback, and
interesting applications. The effort will pay off in the end,
because the unconstrained nature of user input that makes
sketch interfaces so difficult to implement also makes them
very powerful and expressive.

26

Active Cloud DB: A RESTful
Software-as-a-Service for Language Agnostic

Access to Distributed Datastores
Chris Bunch Jonathan Kupferman Chandra Krintz

Department of Computer Science, University of California, Santa Barbara
{cgb, jkupferman, ckrintz}@cs.ucsb.edu

Abstract—In this paper, we present Active Cloud DB, an open
source Software-as-a-Service (SaaS) application that allows for
RESTful access to cloud-based distributed datastore technologies
that implement the Google Datastore API. We implement Active
Cloud DB as a Google App Engine application that we employ
to expose the Google App Engine Datastore API to developers –
for use with any language and framework. We evaluate this SaaS
on both Google App Engine and over AppScale, the open-source
implementation of Google App Engine that enables Google App
Engine applications to execute on cloud infrastructures without
modification. As part of this work, we extend Active Cloud
DB with simple caching support to improve the performance of
datastore access and evaluate our technique with and without this
support. We also make use of this support within multiple client-
facing prototypes (e.g. Ruby on Rails, Python through Django)
to show the ease-of-use and applicability of our contribution to
other web development environments.

I. INTRODUCTION

Distributed key-value datastores have become popular in
recent years due to their simplicity, ability to scale within web
applications and services usage models, and their ability to
grow and shrink in response to demand. As a result of their
success in non-trivial and highly visible cloud systems for web
services, specifically BigTable [4] within Google, Dynamo [1]
within Amazon, and Cassandra [3] within Facebook, a wide
variety of open-source variations of distributed key-value
stores have emerged and are gaining widespread use.

However, these datastores implement a wide variety of
features that make them difficult for prospective users to com-
pare. For example, there are differences in query languages,
topology (master/slave vs peer-to-peer), consistency policies,
and end-user library interfaces. As a result, we and others have
investigated a single framework with which such systems can
be compared. Others have done so through a system known
as YCSB [6], while we do so through the AppScale cloud
platform [5], [2].

AppScale is an open-source implementation of the Google
App Engine cloud platform. It employs the Google Datastore
API as a unifying API through which any datastore can be
“plugged in”. Once a datastore implementation is added to
AppScale, it is deployed and configured automatically (there
are command-line parameter settings for replication factor,
cloud size, etc.) within the AppScale cloud deployment. Thus
AppScale automates the configuration and deployment of these

complex distributed systems and facilitates different databases
to be compared. AppScale currently implements this key-
value API using HBase, Hypertable, Cassandra, Voldemort,
MongoDB, MemcacheDB, Scalaris, and MySQL Cluster. Un-
fortunately, AppScale only supports applications written in the
languages that Google App Engine supports (currently Python
and Java). YCSB does not support applications at all but
instead spawns requests between the server and the datastore
for the sole purpose of measuring datastore response time and
throughput.

In this work, we address the problem of how to easily
provide users of any programming language and framework
with a database-agnostic interface to key-value datastores. To
enable this, we design and implement a Sofware-as-a-Service
(SaaS) component that runs over AppScale, called Active
Cloud DB (in the spirit of Ruby’s ActiveRecord). Active Cloud
DB is implemented as a Google App Engine application that
is implemented via the Google Datastore API and can run over
AppScale and Google’s environment.

II. EVALUATION

We next employ Active Cloud DB over AppScale to eval-
uate the performance characteristics of the various supported
datastores. We begin by describing our methodology and the
present our results.

A. Methodology

For our experiments, we measure the performance of the
primitive operations as part of an overall workload. In both
scenarios, this is done over two back-end AppScale datastores,
Cassandra version 0.5.0 and MemcacheDB version 1.2.1-Beta.

We use 16 nodes and 10000 random operations are per-
formed with a 50/30/20 get/put/query ratio. Once an operation
is selected, nine concurrent threads perform the operation
and access their corresponding AppServers. We intentionally
perform the operation on a single key in the datastore in order
to maximize the amount of contention in the system.

As both of the datastores here have a number of settings that
can be used, we configure both Cassandra and MemcacheDB
in a particular way throughout AppScale deployments. While
Cassandra allows the user to specify the consistency require-
ments on all operations, we set it to use inconsistent reads and
writes: only one node in the system is needed to participate

27

in these operations. Conversely, in MemcacheDB, we direct
all reads and writes to the master node in the system. While
it does offer the ability to read from any database node, these
initial tests access only the master node and use the replicas for
data backup. Current work is underway to expand AppScale
to read from any database node in the system.

B. Results

Figure 1 shows the performance of the system under a
50/30/20 get/put/query workload across 16 nodes. Get opera-
tions are faster for Cassandra than MemcacheDB, but now
both are significantly slower than their cached equivalents.
This is likely due to the substantially smaller amount of data
in memcached, allowing for much faster read access. Write
performance is roughly the same whether or not caching is
employed.

III. CONCLUSION

We present Active Cloud DB, a Software-as-a-Service that
runs over the Google App Engine cloud. Active Cloud DB is
a Google App Engine application that executes over Google
App Engine or over its open-source counterpart, AppScale.
It exposes the Google Datastore API via REST to other
languages and frameworks. We evaluate its use within Google
and AppScale and present a number of proof of concept
applications that make use of the interface to access a wide
range of diverse key-value stores easily and automatically. We
also extend Active Cloud DB with simple caching support
to significantly improve query performance for Active Cloud
DB and other Google App Engine applications that execute
using an AppScale cloud. The proof of concept applica-
tions, AppScale, and Active Cloud DB, can all be found at
http://appscale.cs.ucsb.edu.

REFERENCES

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. ACM SIGPLAN Notices, 35(5):1–12, 2000.

[2] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, P. Lakhina,
Y. Li, and Y. Nomura. An Evaluation of Distributed Datastores Using the
AppScale Cloud Platform. In IEEE International Conference on Cloud
Computing, 2010.

[3] Cassandra. http://incubator.apache.org/cassandra/.
[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. Gruber. Bigtable: A Distributed Storage
System for Structured Data. In Symposium on Operating System Design
and Implementation, 2006.

[5] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman,
and R. Wolski. AppScale: Scalable and Open AppEngine Application
Development and Deployment. In ICST International Conference on
Cloud Computing, Oct. 2009.

[6] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB, Mar. 2010. http:
//www.brianfrankcooper.net/pubs/ycsb.pdf.

Fig. 1. Average round-trip time for get (top), put (middle), and query (bottom)
operations under a load of 9 concurrent threads for a 50/30/20 get/put/query
workload, run over 16 nodes.

28

Channel Management for 802.11n Wireless
Deployments

Lara B. Deek, Kevin C. Almeroth, Elizabeth Belding
Department of Computer Science, University of California, Santa Barbara

{laradeek, almeroth, ebelding}@cs.ucsb.edu

I. INTRODUCTION

A considerable amount of work has looked at efficient
methods of managing the available channels in wireless LAN
deployments, in what is referred to as channel management.
Channel management is the process of intelligently incor-
porating the characteristics of a wireless technology and its
underlying environment conditions during channel assignment.
Existing solutions, though exhaustive, have been designed to
operate over traditional IEEE 802.11a/b/g wireless standards.
With the advent of the IEEE 802.11n standard, a next gener-
ation wireless LAN technology, which adds major updgrades
to legacy 802.11a/b/g clients [1], [2], new solutions must be
designed to take advantage of the opportunities as well as
deal with the challenges that this emerging WLAN technology
provides.

The IEEE 802.11n standard has a number of new features
that allow significant increases in data rate. These new features
include multiple-input-multiple-output (MIMO) transmission
schemes, channel bonding two 20MHz channels into a single
40MHz channel, as well as operating in the 5GHz frequency
range which offers a larger number of subchannels to operate
on in comparison to operating in the 2.4GHz range, as is
the case for 802.11b/g [1]. Even in backwards-compatibility
mode, where 802.11n does not utilize its additional features,
802.11n provides radio performance improvements with better
communication range. With this knowledge and prior to even
becoming Wi-Fi certified, vendors and users are accepting and
quickly migrating towards 802.11n technologies.

Although 802.11n can potentially attain high data rates,
given the number and complexity of its added features as well
as the impact of the underlying environment conditions on
performance, high data rates can only be achieved through
intelligent and adaptive channel management strategies. For
example, by accounting for the effects of MIMO and channel
bonding together on channel performance, we are not only
dealing with a channel assignment problem, where channels
are assigned to particular users based on interference relation-
ships, but also a management problem where all the charac-
teristics of the technology are addressed together to achieve a
combined level of performance. By addressing the impact of
the (changing) wireless medium on system performance, the
channel management solution is now also adaptive.

Channel assignment is an NP-hard, graph-coloring, problem
that has been addressed in the context of 802.11a/b/g technolo-

gies [3], [4]. Existing channel assignment schemes attempt to
allocate orthogonal channels to nodes that interfere with each
other. A simple technique is to use static channel assignment.
Recent work has addressed dynamic channel assignment solu-
tions whereby changes in network characteristics, such as load
or interference, trigger channel re-assignments [5]. Although
multiple solutions to the channel assignment problem exist,
they are limited by the fact that they do not exploit the
flexibility and greater opportunities that 802.11n provides.
There is a clear need to develop a comprehensive channel
management strategy that can address the available features
so as to maximize gains in channel capacity.

In this proposal, we discuss the characteristics of the IEEE
802.11n standard that need to be addressed in the design of a
channel management solution. We also motivate the need for
such a solution by showing how existing solutions in related
research fall short in an 802.11n setting.

II. BACKGROUND AND MOTIVATION

In this section, we first provide background information
about the main 802.11n features, namely MIMO and channel
bonding, and refer to related work that has addressed these
features. We then discuss existing work on channel manage-
ment solutions and load balancing. Through a discussion of
background information and how related work falls short to
802.11n deployments, we motivate the need for a new channel
management solution.
Multiple-Input-Multiple-Output (MIMO): Due to the
availability of multiple discrete antennas, MIMO allows mul-
tiple data streams to be sent simultaneously along the same
channel1. MIMO takes advantage of the multiplicity of data
streams to improve data rate as well as at greater dis-
tances using spatial beamforming and spatial multiplexing
techniques. Spatial beamforming coordinates and focuses the
signal sent from each antenna on to a single receiver to
maximize the signal strength at that receiver, hence increasing
SNR to a single receiver at farther distances2. On the other
hand, spatial multiplexing or diversity takes advantage of the
multipath nature of wireless environments to send multiple
spatial streams, hence increasing SNR. Althought the benefits
of MIMO technologies have been well studied, the integration

1The draft-n specification provides for up to 4 spatial data streams; however,
compliant hardware is not required to support that many.

2Broadcast and multicast messages do not benefit from spatial beamforming
since they are not unidirecitonal in nature.

29

2

of MIMO into IEEE 802.11 wireless deployments have yet to
be studied.

Channel Bonding: Channel bonding bonds two adjacent
20MHz channels together. 802.11n provides the option of
operating over a 40MHz channel, which doubles the physical
(PHY) layer data rate. The tradeoff of using channel bonding is
that fewer channels will remain for other devices; furthermore,
wider channels decrease range and are more susceptible to
interference [6]. In traditional 2.4GHz Wi-Fi deployments
where there are only 3 non-overlapping 20MHz channels,
channel bonding was found to be more harmful due to limited
channel availability and will lead to throughput degradation
[7], [2]. On the other hand, due to the increased channel oppor-
tunities in the 5GHz range with 24 non-overlapping 20MHz
channels and at least 12 non-overlapping 40MHz channels,
there are more opportunities to exploit channel bonding in
this frequency range. This flexibility in allocating bandwidth
has defined the recent direction in bandwidth management
solutions which advocates adapting channel width in wireless
networks to accomodate changes in load conditions [8], [9],
[10], [6]. New solutions should build over previous work
and provide an analysis of the behavior of channel bonding
under varying environment conditions, such as interference
and traffic requirements. These solutions should also look at
effective ways of incorporating channel bonding into channel
management solutions in an adaptive and efficient manner.

Channel Management Solutions: Channel assignment in
WLAN networks is a well-known NP-hard problem that has
been sufficiently studied in legacy 802.11 technologies [11],
[3], [12], [4] as well as in cellular networks [13]. Channel
assignment attempts to allocate orthogonal channels to nodes
that interfere with each other. Interference between APs or
nodes in a network is modeled using a conflict graph (CG),
where each node is represented by a vertex, and interference
(or conflict) between two nodes is represented by an edge
between the respective vertices. A CG is used during channel
assignment to minimize the number of conflicting APs. As a
result, the channel assignment problem is reduced to a graph-
coloring problem, which is NP-hard [14]. Although multiple
solutions to this NP-hard problem exist, they are limited by
the fact that they do not exploit the flexibility and greater
opportunities that 802.11n provides.

Load Balancing Techniques: The load within a network
can vary significantly even on short timescales [8]. Therefore,
related work has addressed improvements on the channel
management problem by coupling channel assignment with
load balancing. Proposed methods for distributing load over
the network include manipulating client-AP association [15],
as well as adjusting transmission power [4], [16]. Such ap-
proaches shift demand to lightly loaded APs, but weaken
the RSS (received signal strength) and restrict throughput.
In contrast, other work perform load balancing by shifting
bandwidth to highly loaded APs using adaptive channel-width
allocation [10]. Since 802.11n provides the option of operating
over either a 20MHz or 40MHz channel, this inherent feature

should be leveraged to perform load balancing in the channel
management solution.

III. CONCLUSION

While efficient and low-overhead methods of building a
channel management scheme for 802.11a/b/g networks have
been well-studied in literature, there is a crucial limitation to
the existing solutions if they are to be applied in 802.11n
WLANs: existing solutions are not able to utilize and benefit
from the enhanced channel options available in 802.11n.
802.11a/b/g follows SISO technologies and uses homogeneous
channel widths of 20MHz. On the other hand, 802.11n can use
MIMO technologies and channel bonding, and thus has greater
opportunities to exploit the existing bandwidth. In order to
design effective 802.11n channel management schemes, and
given the complexity and variety of 802.11n communication
parameters, proposed channel assignment schemes should take
these characteristics into account. In this proposal, we discuss
how we can leverage the vast accumulation of knowledge in
the design of channel management solutions for SISO schemes
and pick up from where previous work has left off: in the
incorporation of 802.11n-specific features to best utilize the
options for maximizing channel and network capacity.

REFERENCES

[1] E. Perahia and R. Stacy, Next Generation Wireless LANs: Throughput,
Robustness, and Reliability in 802.11n. Cambridge University Press,
2008.

[2] V. S. et. al., “802.11n under the microscope,” in ACM Conference on
Internet Measurement (IMC), Vouliagmeni, Greece, 2008.

[3] N. Ahmed and S. Keshav, “SMARTA: A self-managing architecture for
thin access points,” in ACM Proceedings of CoNEXT, Lisboa, Portugal,
December 2006.

[4] A. M. et. al., “A client-driven approach for channel management in
wireless LANs,” in IEEE INFOCOM, Barcelona, Spain,, April 2006.

[5] A. Raniwala and T. cker Chiueh, “Architecture and algorithms for an
IEEE 802.11-based multi-channel wireless mesh network,” in INFO-
COM, Miami, FL, USA, March 2005.

[6] R. C. et. al., “A case for adapting channel width in wireless networks,”
ACM SIGCOMM Computer Communications Review, vol. 38, no. 4, pp.
135–146, October 2008.

[7] T. Instruments, “WLAN channel bonding: Causing greater problems than
it solves,” September 2003.

[8] R. Gummadi and H. Balakrishnan, “Wireless networks should spread
spectrum based on demands,” in ACM Workshop on Hot Topics in
Networks (Hotnets), Calgary, Canada, October 2008.

[9] H. R. et. al., “Frequency-aware rate adaptation and MAC protocols,” in
ACM MobiCom, Beijing, China, September 2009.

[10] T. M. et. al., “Load-aware spectrum distribution in wireless LANs,”
in Internation Conference on Network Protocols (ICNP), Orlando, FL,
USA, October 2008.

[11] X. Ling and K. L. Yeung, “Joint access point placement and channel
assignment for 802.11 wireless LANs,” IEEE Transactions on Wireless
Communications, vol. 5, no. 10, pp. 2705–2711, October 2006.

[12] B. K. et. al., “Measurement-based self organization of interfering 802.11
wireless access networks,” in INFOCOM, Anchorage, AK, USA, May
2007.

[13] I. Katzela and M. Naghshineh, “Channel assignment schemes for cellular
mobile telecommunication systems: A comprehensive survey,” IEEE
Personal Communications, vol. 3, pp. 10–31, 1996.

[14] M. M. H. et. al., “On spectrum sharing games,” in ACM Symposium on
Principles of Distributed Computing (PODC), Canada, July 2004.

[15] Y. B. et. al., “Fairness and load balancing in wireless LANs using
association control,” in MobiCom, Philadelphia, PA, USA, 2004.

[16] P. V. B. et. al., “Cell breathing in wireless LANs: Algorithms and
evaluation,” IEEE Transactions on Mobile Computing, vol. 6, no. 2,
pp. 164–178, February 2007.

30

Identifying Communities with Coherent and
Opposing Views

Nicholas Larusso, Petko Bogdanov and Ambuj Singh
Department of Computer Science, University of California, Santa Barbara

{nlarusso, petko, ambuj}@cs.ucsb.edu

Abstract—Collaboration capabilities are becoming pervasive in
online applications. Social media and social knowledge systems
are arguably samong the highest impact applications built around
collaboration. Following its launch, Wikipedia has become the
most visited not-for-profit free-content encyclopedia, attracting
contributers and users who spend 5 minutes a day on average
editing and accessing information. Little research has been
directed towards understanding the multifaceted community
structure of contributers and the topics they collectively promote.

We propose a framework for discovery and characterization
of collaborative community structure based on raw content-
generation analysis. The key steps of our approach include (i)
extracting signed pairwise contributor interactions (ii) modeling
the editors community as a signed graph and (iii) analyzing the
community structure in tandem with the content evolution. Our
analysis reveals groupings of common-interest editors that back
each other and collectively criticize other communities.

I. INTRODUCTION AND RELATED WORK

Understanding how individuals interact and form communi-
ties in order to promote a common set of ideas has long been
of interest to social scientists. The recent advances in social
media (eg. Facebook, Flickr, Wikipedia, etc.) have provided
researchers with a plethora of rich datasets that enable the
large scale studies of social relationships, user interactions,
group formation, and other phenomena of interest.

Our goal in this work is to identify user communities that
share views on a subset of topics as well as those communities
with opposing views. Being able to map such communities
is important for ensuring content integrity and objectiveness.
For example, if two groups with opposing views are actively
editing an article, they can naturally regulate each other, thus
producing unbiased content with little administrative overhead.
In addition, using such a community model, new content can
automatically be tagged as (non)controversial, based on the
involved set of contributors.

Extreme polarity of opinions may also result in edit wars,
manifested as sequences of adds and reverts of the same
content. Such phenomena add overhead to the process of con-
tent generation as administrative resources must be allocated
to arbitrate controversies. Prior understanding of opposing
communities and their views may help automated conflict
resolution, minimizing the overhead for administrators.

Much of the previous work in the area of detecting com-
munities has focused on social networking data in which the
network contains homogeneous and explicit links [3]. In these
networks, a link between two users stands for a friendship

relationship and often there is no differentiation between
types of friendship (eg. high school friend, family relative
etc.). In addition, networks comprised only of friendship links
encode solely the positive part of the spectrum of individual
relationships. Only recently have signed networks been used
to represent and analyze the dynamics of communities, where
links can be both positive and negative [2].

Previous work on community detection has been primarily
directed to positive-relation social networks using traditional
graph clustering techniques. However, in the presence of both
positive and negative links traditional graph clustering ap-
proaches become inapplicable. A recent method [4] targeting
signed graphs optimizes a clustering based on the positive
edges and adjusts for the negative as a second step.

In this work we propose a method of constructing a signed
interaction network purely from content, using text retrieval
and topic modeling techniques. Additionally, we propose a
method to discover communities in the context of the signed
editor interaction network. Our approach, based on Simulated
Annealing, naturally handles positive and negative interactions
in tandem.

II. METHODS

We would like to capture streams of opposing opinions
within a single topic and identify the users who contribute to
these streams in a text-based online collaborative system (eg.
Wikipedia). We model the interaction between subsequent user
revision at the level of different topical ideas within a single
article. A natural separation within an article is the paragraph
as separate ideas are developed in separate paragraphs. Note
that the techniques we propose are not tied to this specific
choice and similar analysis can be performed at the section or
whole article level.

For this study we use articles from the Wikipedia edits
dataset in which all revision of the articles are tracked. Each
revision is comprised of a contributor, revision timestamp
along with the state of the article after the contribution. For
this study, we process the Anarchism article as it contains a
large number of revisions and describes a controversial topic
with an active group of contributors.

A. Scoring Editor Interactions

We propose an interaction model that is based on consecu-
tive content modification. We represent any text excerpt using
a bag of words model by applying punctuation and stop word

31

removal and term stemming, collectively referred to as text
retrieval. Within this model, textual content is viewed as a high
dimensional vector encoding term frequencies. Some terms
are highly correlated while others have multiple meanings.
To address these complexities between terms we transform
the high-dimensional term representation into latent topic
representation by employing a state-of-the-art probabilistic
method called Latent Dirichlet Allocation (LDA) [1].

Fig. 1. Interaction of user B with user A

We determine the mode of interaction (positive or negative)
based on the evolution of the content, undergoing consecutive
revisions. This process is illustrated pictorially in Figure 1.
The same text entity is moved from state d(t−1) to state d(t)
by user A, and then to state d(t+1) by user B. Each revision is
represented by a corresponding revision vector which contains
the changes in term frequencies from the previous state. In
our example, B extends the topics that A previously extended
along with some “orthogonal” topics and hence the angle Y
between the revision vectors is acute. To score interactions,
we use the cosine similarity score:

s(B,A) = cos(B,A) =
B ·A
||B|| ||A|| . (1)

B. Community Identification

We combine user interaction edges into a global interaction
network N(U, S) ,where U is the set of all network nodes
representing contributors and S is the set of all weighted
interactions. When multiple interactions between the same pair
of users are available, we represent them as the average of their
scores. Note, that a model of the score distribution between
two users may provide a more robust analysis (over sample
mean) of users with multiple interactions. However, due to
space, this model is not explored here.

Because our interaction network is signed and weighted, we
would like our community identification algorithm to optimize
two criteria: maximize in-community positive edges and cross-
community negative edges. Formally, we define the energy of
a clustering assignment E(C) as:

E(C) = −α
∑

i

∑

A,B∈Li

s(A,B)+(1−α)
∑

i

∑

A∈Li,B/∈Li

s(A,B),

(2)
where s(A,B) is the weight of the link connecting nodes

A and B, Li is the node labeling for the ith cluster, and α is
a weighting parameter controlling the importance of positive
and negative edges. In the extreme cases (α = 1 and α = 0),
we are left with the standard formulation of a graph clustering

criteria in which the goal is to maximize within community
edges and the Max-cut problem respectively. Both of these
extreme formulations are NP-complete problems.

The optimal community assignment is the one of lowest en-
ergy and the problem of finding it is an instance of the class of
combinatorial optimization problems. We employ a simulated
annealing (SA) based search to obtain an approximate solution.

SA works by proposing local changes in the community
assignment. It accepts a change based on how it affects the
global energy of the network. Unlike greedy methods, SA
avoids getting trapped in local minima by probabilistically
accepting changes that may increase the system energy. The
rate at which ‘bad’ moves are made is controlled by the
annealing schedule. This allows SA to effectively combine
state space exploration and exploitation. When the temperature
is high, a large number of states will be explored and as
the temperature decreases, SA becomes more selective, only
moving to states that reduce the system energy.

III. EXPERIMENTAL EVALUATION

We apply our method on the contributers base of the
Wikipedia Anarchism article. We use 25 topics for the LDA
representation and produce a signed network of 577 users
and 1896 interactions. Figure 2 present an evaluation of
balance theory, postulating reciprocity of signed edges, for our
experimental network. For clarity of presentation we quantize
edges into strong negative (−2), negative (−1), positive (1)
and strong positive (2). The figure shows the probability of
having a reverse edge of certain type, given the existence of
a forward one. Negative edges tend to have opposite negative
and positive - opposite positive. This statistic alludes to the
existence of collabotarion communities.

Fig. 2. Balance theory for Anarchism.

In addition, we have evaluated the convergence of our
community discovery algorithm. We found that our algorithm
consistently found local minima (with total energy values close
to that of the optimal clustering). Results are not presented
here due to lack of space.

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3(4-5):993–1022, May 2003.

[2] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and
negative links in online social networks. WWW, pages 641–650, 2010.

[3] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Aug 2003.

[4] B. Yang, W. Cheung, and J. Liu. Community Mining from Signed Social
Networks. TKDE, 19(10):1333–1348, Oct. 2007.

32

A Study on VLSI On-line Stability Detectors
Chris Lee, John Oliver

Electrical Engineering Department
California Polytechnic State University

{clee83, jyoliver}@calpoly.edu

Abstract—Digital ICs become prone to stability faults caused
by wear out effects like electromigration and hot electron
injection over long term usage. These faults may cause timing
violations to occur and eventually crash the system. Studies show
that a typical chip is used for only a fraction of its expected
lifetime before being discarded for this reason. Consequently,
having a mechanism to measure these faults provides a way to
scale down its operating frequency, rendering the chip reusable
for another less computationally intensive application. Detecting
these faults require concurrently running logic circuits called
stability detectors. Several methods of on-line stability detection
have previously been introduced, which involve probing the
output flip-flop for erroneous signal switching between clock
transitions. The main intention of this study is to characterize
the performance of such stability detector circuits under various
conditions including operating frequency, voltage, temperature
and transistor sizing. The present major challenge in this study
is to implement a configurable delay mechanism to provide test
signals to the stability detector circuits. After analyzing several
delay mechanisms, the most promising design involves a staggered
parallel RC network formed by CMOS devices. Variations of
this method are used in clock deskewing and correlating delay
variations in high speed circuits. This paper presents the progress
achieved up to date as well as the work scheduled for the following
stages of this study.

I. INTRODUCTION

Digital VLSI circuits operating at high clock frequencies
are prone to stability faults over long term usage. Effects
like electromigration and hot electron injection cause timing
violations that would eventually crash the system. Previous
studies [1] have highlighted that a typical chip is used for only
a fraction of its expected lifetime before being discarded for
failing to operate as initially intended. Consequently, having
a mechanism to measure these faults provides a way to scale
down the operating frequency of a chip, rendering it reusable
for less computationally intensive applications.

Timing violations are typically caused by late input signal
arrivals. Wear out effects cause MOS interconnect wear out,
causing increased resistances that lead to longer RC delays. A
study done in [2] describes the causes of wear out faults and
outlines some useful wear out fault models.

In this paper, we report the work done on designs for both
Franco and Yada’s stability detector circuits as well as the
findings from the research on configurable delay circuits. This
paper is structured as follows. In Section II, we outline the
architecture and functionality of the stability detectors that
are being studied. In Section III, we describe findings on
existing circuit designs that create controllable delay signals.

Conclusions and expectations of this study are presented in
Section IV.

II. STABILITY DETECTORS

The concept of detecting delay faults was first introduced as
stability detection [3], where the input and intermediate signals
of an output flip-flop were compared after the active clock
transition for a specific period of time. This period, also known
as the checking period, is at least as long as the hold time for
the corresponding flip-flop. An error occurs if the input signal
changes within this checking period and the stability detector
circuit generates an error signal.

A stability detector typically works by comparing two signal
values within a checking period. This behavior is akin to an
XOR operation. Another variation of stability detector circuits
[4] performs this XOR comparison by using a redundant stage
to replicate the initial signal value. This saved value is then
XOR-ed against the current signal value during the checking
period. Both these signals are fed into a sense amplifier acting
as a comparator, which then generates the error signal.

The main objective of this study is to implement these
stability detectors in hardware and characterize their perfor-
mance. This involves designing built-in signal generator cir-
cuitry to simulate stability faults during operation. At present,
both stability detector designs have been implemented in
SPICE and physical layout, while work is ongoing in modeling
a suitable on-chip signal generator.

A stability detector is typically a logic comparator that
activates after an active clock transition for the duration of a set
checking period. Practically, the detector can be visualized as
a charge storing element that gets discharged very quickly as
some trigger signal activates. That trigger would be the signal
experiencing a stability fault during the checking period.

Fig. 1. Stability Checking Architecture

33

Figure 1 shows a single stability detector are located at the
output stage of the functional unit to be tested. Each circuit-
under-test (CUT) output requires its own stability checker
which can be priority encoded in the next stage to determine
the error source. Both system flip-flop and the stability checker
cells share the common system clock. During the checking
period for an active high clock, changes to the input signal
will be detected by the checker, which then generates an
error signal. Figure 2 shows the operation of the Franco
stability detector [3]. In this simulation the late arrival of V(d)
was detected during the second active clock pulse and the
corresponding error signal was generated.

III. CONFIGURABLE DELAYS

Simulating a stability fault requires generating a short delay
that is at most as long as half a clock cycle. A controllable
incremental delay generator would be essential for providing
a comprehensive test pattern during characterization. In this
section, three different delay mechanisms are briefly described.

Delay circuits are basically derivatives of RC networks.
These circuits are constructed by exploiting intrinsic properties
of MOS transistors which include resistive and capacitive
regions within their structures. These RC structures contribute
a transient delay whenever the transistor switches on or off,
since each switching operation entails electrical charging or
discharging.

At the gate level, additional transistors could be inserted
at one of two logic gate inputs [5]. These transistors provide
the RC delay component that creates a slower signal arrival
time for one of the two inputs of the NAND gate. The
length of the delay here is modified by manipulating transistor
width(W) and length(L) values for the delay component: larger
W increases capacitance while larger L increases resistance.

Other delay methods provide more flexibility in dynamic
control. The techniques described in [6][7][8] create delays by
enabling and disabling parallel pull up or pull down sections
for an inverter buffer. These methods are logic restoring unlike
[5]. Several models of these delay circuits were simulated in
SPICE using TSMC 60nm MOSFET models.

Our preliminary study also included a cascaded logic gate
delay chain delay technique. Each logic gate contributed a
unit delay as the signal propagates through it. The outputs
at each stage were multiplexed to enable a selectable line.
The configurable delay lines will be controllable by a set
of registers that interfaces with the user. A serial scan chain
would be used to configure the delay circuit.

The results in Table I differentiate each design from one
another particularly in terms of maximum delay range and
average step size. Based on those values, we estimate the op-
erating frequency of our system to be about 10GHz. The delay
increments of the mechanisms would allow us to manipulate
the Data and Clock inputs of the stability detector for the
characterization process. In conjunction with signal delays, the
characterization plans include varying the operating voltage
and temperature of the system.

Fig. 2. Stability Checker Operation

TABLE I
CONFIGURABLE DELAY COMPARISON

Feature Delay A1 Delay B2 Delay C3

FET count 38 27 90
Range 2.21ps 13.38ps 173.08ps

Step size 0.30ps 6.34ps 31.9ps

IV. CONCLUSION

The initial work done so far has provided most of the initial
timing analysis data for the layout design phase which is
currently underway. The following stages of this study entails
selecting parameters for chip fabrication and packaging as well
as board design.

REFERENCES

[1] J. Y. Oliver, R. Amirtharajah, V. Akella, R. Geyer, and F. T.
Chong, “Life cycle aware computing: Reusing silicon technology,”
Computer, vol. 40, no. 12, pp. 56–61, dec. 2007. [Online]. Available:
http://works.bepress.com/jyoliver/4

[2] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai, “Detecting
emerging wearout faults,” in In Proceedings of the IEEE Workshop on
Silicon Errors in Logic - System Effects, 2007.

[3] P. Franco and E. McCluskey, “On-line delay testing of digital circuits,”
VLSI Test Symposium, 1994. Proceedings., 12th IEEE, pp. 167 –173, apr.
1994.

[4] S. Yada, B. Amrutur, and R. A. Parekhji, “Modified stability checking for
on-line error detection,” VLSI Design, 2007. Held jointly with 6th Interna-
tional Conference on Embedded Systems., 20th International Conference
on, pp. 787 –792, jan. 2007.

[5] R. S. Ethe, S. B. Commack NY, and S. NY, “Mos monostable
multivibrator,” US Patent US 4 629 908, 12 16, 1986. [Online].
Available: http://www.patentlens.net/patentlens/patent/US 4629908/en/

[6] S. J. C. Eddy C. Huang, “Cmos delay circuit with controllable
delay,” US Patent US 5 121 014, 06 09, 1992. [Online]. Available:
http://www.patentlens.net/patentlens/patent/US 5121014/en/

[7] G. Geannopoulos and X. Dai, “An adaptive digital deskewing circuit
for clock distribution networks,” Solid-State Circuits Conference, 1998.
Digest of Technical Papers. 1998 IEEE International, pp. 400 –401, feb.
1998.

[8] M. Maymandi-Nejad and M. Sachdev, “A monotonic digitally controlled
delay element,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 11, pp.
2212 – 2219, nov. 2005.

1Delay circuit with controllable delay [6]
2Adjustable delay circuit [7]
3NAND gate delay chain

34

Secure Information Flow Analysis for Hardware
Design: Using the Right Abstraction for the Job

Xun Li Mohit Tiwari Ben Hardekopf Timothy Sherwood Frederic T. Chong
Department of Computer Science

University of California, Santa Barbara
{xun, tiwari, benh, sherwood, chong}@cs.ucsb.edu

I. INTRODUCTION

Embedded systems are increasingly being used in criti-
cal applications that require a high level of assurance. For
example, systems used in banks, automobiles, aircraft, and
smartphones can benefit from strong guarantees on how secret
or untrusted information flows through the system, ensuring
that secrets never leak to unclassfied outputs or that untrusted
information never affects critical system data.

To provide such guarantees, designers of embedded systems
often rely on information-flow analysis tools. Information-flow
analysis is a versatile technique that associates information
labels (such as secret/unclassified or trusted/untrusted) with
various system inputs, and tracks how these labels propagate
through the system to the outputs. Such tracking can then
be used to ensure policies on information-flow such as non-
interference, which requires that secret inputs have no visible
effect on unclassified outputs.

While there exist many techniques to track information
flows through software [2], little work has been done to aid
hardware developers in analyzing information flows through
hardware designs. Ideally, hardware designers should be able
to design using familiar idioms, get early design-time feedback
about information flows in the system, and quickly iterate
through different options to create verifiably secure hardware
designs. However, hardware designs have unique characteris-
tics that make a direct application of traditional information
flow tracking techniques too conservative to be useful. Hence
in this paper, we posit that by carefully choosing the right
level of abstraction for analysis, we can analyze information
flows through hardware designs precisely using automated,
language-level techniques.

We explore a new direction where we base the information-
flow analysis on a pervasive idiom in hardware design, namely
Finite State Machines, and use this fact to make our analysis
more precise. We propose that this trend towards expressing
hardware explicitly as state machines not only retains the high-
level programmability that is so desired by developers, but also
allows more precise information-flow analysis.

II. BACKGROUND

A. Hardware Design Using State Machines

Different from software design, in the hardware design
field that state machines are widely recognized as a natural

(t t) S0case(cur_state)
S0: begin

…

cur_state = S1
end

S1
end

S1: begin
…

cur_state = S2
end

S2

S2: …
…

Fig. 1. A Simple State machine Diagram.

way to describe hardware controllers, and most commercial
Computer-aided design (CAD) tools can extract state machines
from Verilog/VHDL programs automatically. More recently,
numerous state machine based languages and diagrams have
been invented to explicitly express hardware as state ma-
chines [1], [3].

A state machine can be expressed as a set of states and tran-
sitions among those states triggered by signals which are either
inputs to the state machine or local data. The most natural way
to implement a state machine using programming languages
is to have a variable cur_state to store the current state,
and case-style statements to decide state transitions based on
cur_state and some other conditions.

Figure 1 gives a simple state machine diagram along with
corresponding Verilog program code. The state machine con-
sists of 3 states S0,S1 and S2, represented by the variable
cur_state. Based on different value of cur_state, dif-
ferent behaviors are performed and then states are changed by
assigning different values to cur_state.

B. Information Flow Analysis

When information flow analysis is applied to programs,
all the variables are associated with security labels according
to certain information flow policy. In a type-system based
information flow analysis, those security labels are treated as
types of the variables. Different typing rules are established to
track different types of information flows: For an assignment
statement x = expression, Explicit Information flows from

35

M t f ll i f ti
S0

Meet of all information

flows into every state

S0 S1 S

S1

Security

Label

cur_state S0 S1 Sn……
Label Label Label

Meet of all informationSn

……

(a) (b)

Meet of all information

flows out from every state

Sn

(a) (b)

Fig. 2. (a) Existing program analysis on state machines: States are represented as values of a single variable cur_state, associated with a single
tag, and all information flows into and out from every individual state are combined. (b)Our proposed precise analysis: Every specific state is analyzed
independently.

the expression to the variable x. For a conditional statement
if (x) y = expression, Implicit Information flows from the
condition x to the assigned variable y inside the branch.

III. HARDWARE DESCRIPTION ANALYSIS

A. Imprecise Program Analysis on Behavioral HDLs

Figure 2(a) shows how conventional information flow anal-
ysis is applied to state machine implementations. The value of
cur_state can be one of S0, S1 . . ., indicating the current
state.

When information flows are analyzed, cur_state is
associated with a single security label. Such analysis does
not take into consideration the fact that information flows are
actually flowing through each individual state, hence there
is no way to track the security labels of individual states
when states are represented only as different values of the
variable cur_state. Whenever the variable cur_state
get tainted/untrusted, everything will become tainted/untrusted
according to the fact that there are implicit information flows
from the conditional guard to the body. Such taint explosion
makes the analysis conservative.

B. State Machine Based Analysis

The key insight of our approach is that by analyzing hard-
ware descriptions explicitly as state machines (i.e., as a reified
set of individual states with accompanying transitions) rather
than as an implicit state machine encoded using variables,
the analysis can precisely track security labels for individual
states. Figure 2(b) shows that we associate security labels with
each individual state, and analyze information flows for every
state independently, hence we are able to derive more precise
information flow relations.

C. General Framework of Our Tool

In conclusion, we propose to explicitly model hardware
descriptions as state machines such that we are able to analyze
information flows through every individual state, and give
more precise results than conventional techniques. Figure 3
presents the general framework for our proposed approach.

State Machine

D i i

Precise

Information FlowDescription Information Flow

Analysis

Auto generateConservative
Our!

Contribution

Behavioral HDL

Auto generate
Information Flow

Analysis

Contribution

Synthesis Tool

Physical Hardware

Fig. 3. General Framework of Our Tool: The highlighted part is our
contribution which allows one to explicitly model hardware designs as state
machines and perform more precise information flow analysis. The gray part–
conventional imprecise information flow analysis techniques are then removed
from the framework.

The bottom part represents the existing framework in which
hardware descriptions are written at either behavioral or
structural abstraction, verified by conventional analysis tools,
then synthesized down to physical implementations. To enable
precise information flow analysis, we add another level above
behavioral hardware descriptions which allows one to describe
hardware using state machine languages, verified using our
proposed analysis tool and compiled to conventional behav-
ioral or structural code using the tool’s back-end.

The major benefits of such a static analysis based approach
is that security properties are enforced and verified statically at
design time, hence no runtime overhead will be introduced to
the hardware. And type system based static analysis is known
to be scalable as the size of the problem space increases.

Our future work seeks to build formal type system based
analyses to express the reduction rules proposed in this paper,
and explore potentials of such technique in software design.

REFERENCES

[1] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming 8, 1987.

[2] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1),
January 2003.

[3] Esterel Technologies. The Esterel v7 Reference Manual, version v7.30 -
initial IEEE standardization proposal edition. 2005.

36

Overhead Reduction for a Gate Level Information Flow

Tracking Processor

Van L. Nguyen, John Y. Oliver

Department of Electrical Engineering, California Polytechnic State University

{vlnguyen, jyoliver}@calpoly.edu

Abstract—With electronic security being a growing concern,

cost-effective data tracking is becoming an important aspect of

modern computer security. Recently, a Gate Level Information

Flow Tracking (GLFIT) processors [1] has been found to be an

effective way to track all data signals and determine which

signals has been tainted and which can be trusted. General

code injection, cross-site scripting, and exposure to a network

are examples of attacks that can taint signals within the

machine and affect its trustworthiness of sensitive data. As an

extension of the GLIFT study, we are attempting to use both

logical optimizations, as well as circuit techniques to minimize

the hardware complexity of GLIFT.

I. INTRODUCTION

Cryptographic keys, sensitive financial data, or even a list
of client names are examples of sensitive information that
potentially can be tainted by outside threats and foreign
signals. A non-general purpose processor has be proven to
be capable of tracking all information flow within a limited
yet functional machine, including all explicit data transfer
and all implicit flows. Though this processor has been
proven to be effective in accurately tracking all signals and
its state of trust (if the signal is tainted or not tainted), a
drawback is its inefficient of hardware use.

A proof-of-concept processor was created using gate

level information flow tracking. GLIFT introduces a unique
processor architecture which utilizes a basic scheme that
keeps track of a binary property (trusted or tainted) for every
datum that flows through the machine. The main focus of
this paper, with regards to the GLIFT processor, is that all
information flows, whether implicit or explicit, are concrete
logic function gates that replace weak ISA descriptions of
general purpose processors but do so in a reduced overhead
fashion.

In this paper, we present a few ways to reduce the

hardware overhead of the GLIFT processor, yet keep the
integrity of the proof-of-concept paper where this processor
was conceived. With a large enough reduction in hardware, it
may be feasible to manufacture the GLIFT processor and
ensure computer security to a needing market. The follow
will cover our means of measurement to compare each
hardware reduction technique versus the original design, the
actual gate reduction process and any conclusions and future
works that can be made.

II. ALUTS

The Stratix II FPGA is the device used for the proof-of-
concept and will also be used to evaluate the amount of
hardware that can be reduced. Specific to ALTERA’s Stratix
family of FPGAs, hardware is measured in Adaptive Logic
Modules (ALMs) which are divided into two Adaptive Look
Up-Tables (ALUTs) [2]. The ALM contains a number of
LUTs that can adaptively be divided between the two
ALUTs; and since ALMs can have up to eight inputs for a
combinational logic block, one ALM can do various
combinations of two functions. Figure 1 (provided by Altera
Corp.) depicts the relationship between a single ALM unit
and its ALUTs as described above.

Figure 1. ALM is a logic array block that adaptively
accommodates logic functions with different number of inputs
and divides them between the two ALUTs

ALUTs contain combinational logic functions and

registers. Focusing on the amount of combinational logic
functions for each ALUT that is used is our measurement
tool for area saved or lost. Since there is a direct correlation
of logic devices to the physical number of transistors used in
the FPGA, a lower amount of ALUTs used for the GLIFT
synthesis will imply a lower amount of total transistors used,
which physically means a smaller total area for the
processor.

III. GATE REDUCTION

A. Proof-of-Concept Logic Design with Shadow Logic

The GLIFT processor is comprised of two parts; the

processor which performs user’s specified tasks, and

shadow logic that tracks all the signals and its

trustworthiness. Figure 2 shows an example of a simple OR

gate and its Shadow Logic counter-part (which is

consequently much larger in terms of sheer number of

gates).

37

The main focus of this paper is to test techniques to

reduce the number of gates or transistors used in shadow

equivalents via logic optimization.

Figure 2. Side by side comparison of traditional OR gate (a)

and the Shadow Logic OR gate(b) for precise data tracking

and trustworthiness where A, B are inputs, O is the output,

and "_t" indicates the trustworthiness state of the respective

signal

B. Multiplexer Gate Reduction

Figure 3 presents the shadow logic from the proof-of-

concept design for a general 2 input MUX. With knowledge

that this processor uses MUXs as a part of its core design,

with particular emphasis on the predicated architecture for

handling conditional situations, the area of this shadowed

MUX is quite large.

Figure 3. Original "Proof of Theory" Shadow Logic

Equivalent to a GLIFT Processor’s MUX which is made up

two shadow AND gates and one shadow OR gate which mimics

a standard MUX which has two AND gates and one OR gate

To understand the function of a combinational logic cell,

we must map out its truth table. For the above cell, a six

input truth table was evaluated and with any reduction that

occurs, the logical output of the new cell must match the

original to maintain functionality. With the shadowed

MUX's truth table, an 8 X 8 Karnaugh Map was the

preferred logic optimization technique used to yield the

Boolean expression below.

From this expression, a simpler logic cell can be made

with fewer gates than the original shadowed MUX. Figure 4

shows the logic cell that maintains the original logical

function of the shadowed MUX but with a reduction in the

number of gates that are needed.

Figure 4. Reduced Shadow Logic for GLIFT Processor’s MUX

that was the result of logic optimization techniques and a direct

representation of the Boolean expression found from the

Karnaugh Map logic optimization technique

Another approach for hardware reduction would be a

lower-level area-optimization technique. The above uses

logic gate reduction techniques while maintaining its

Boolean expression; but on a lower level, transistor arrays

can keep the same logical output but have fewer over-all

transistors. Complementary CMOS gate arrays are used as a

circuit design technique to express Boolean equations

without the use of logic gates. The idea of hardware

reduction on the transistor level will produce a processor

with a more reduced-overhead design.

IV. CONCLUSION

From the data that was gathered. There is a clear change

in the number of ALUTs that were used in each design of

gate reduction on the GLIFT processor. With the gate

reduction process for the “Multiplexer Restructuring

Statistics”, there was a 378.2% decrease in the number of

ALUTs used. Because of this large decrease in size, it may

be viable to manufacture this processor on a custom chip.

This approach of hardware reduction for the GLIFT design

was proven possible and still maintained the original

principle of complete traceability of all signals and its

trustworthiness.

REFERENCES

[1] M. Tiwari, H. M G Wassel, B. Mazloom, F. T Chong, and T.
Sherood, “Complete Information Flow Tracking from the Gates Up,”
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2009.

[2] Altera Corporation, "Stratix II Performance and Logic Efficiency
Analysis," 2006.

38

Analyzing Ruby on Rails Data Models using Alloy
Jaideep Nijjar, Tevfik Bultan

University of California, Santa Barbara
{jaideepnijjar, bultan}@cs.ucsb.edu

Abstract—In this paper we demonstrate that data models
in web applications implemented using the Ruby on Rails
framework can be automatically analyzed using bounded ver-
ification techniques. In particular, we implemented an automatic
translator from Ruby on Rails data models to the input language
of Alloy, a SAT-based bounded verification tool. Alloy verifies
assertions about object oriented data models by exhaustively
exploring all possible configurations of the data model within
a given scope. We experimented on two open source web
applications to demonstrate the effectiveness of our approach.

I. INTRODUCTION

Web application development frameworks based on Model-
View-Controller (MVC) architecture have become the promi-
nent style for web application development. By separating
the data model from the navigation control and the view
generation, these frameworks not only facilitate the use of
sound software design principles such as modularity and
separation of concerns, but they also provide an opportunity
for static analysis and verification of the data model. In this
paper, we focus on the Ruby on Rails (RoR) [2] framework,
and we use an exhaustive bounded verification tool called
Alloy Analyzer [1] for data model verification.

The data model specifications in RoR applications are
based on Active Records [4], which define an object-relational
mapping. We show that the data models specified as Active
Records can be translated to Alloy [1], a specification language
for object oriented models. After this translation, the developer
can write assertions that the data model is expected to satisfy.
We check these assertions within a given scope using the Alloy
Analyzer. A scope simply bounds the number of objects in
each class of the data model. Given a bounded verification
problem, Alloy Analyzer translates each verification query to a
Boolean satisfiability problem (SAT) and checks it using a SAT
solver. If the property is violated Alloy Analyzer generates a
counter-example, demonstrating an instance of the data model
that violates the given assertion.

We wrote a translator that translates data models specified
as Active Records to Alloy specifications. We conducted two
case studies and analyzed data models of two open source
web applications. Our experiments demonstrate that bounded
verification of data models of real-world web applications is
feasible.

II. ROR DATA-MODELING FEATURES

RoR uses an object-relational mapping based on Active
Records [4]. Active Records handle all the details of connect-
ing to the underlying database, mapping objects to tables, and

data manipulation. Active Records are also used to manage
relationships between tables.

In RoR, in order to create an object that is to be stored
in the database (e.g. a Person object, with attributes name,
age and address), one first defines a database migration,
a change to the database schema expressed in a database-
independent way. This creates a persons table with the columns
name, address, and age). Then one writes the correspond-
ing RoR model, which is automatically mapped to the database
table created in the migration via its name. It is in these
model files that the relationships between tables (objects) are
expressed.

Active Record handles three basic types of relationships:
1) has one: An ObjectA is associated with zero or one

ObjectBs. (one-to-one relationship)
2) has many: An ObjectA is associated with an arbitrary

(zero or more) number of ObjectBs. (one-to-many)
3) has and belongs to many: An arbitrary number of Ob-

jectAs are associated with an arbitrary number of Ob-
jectBs. (many-to-many)

Each of these declarations have a set of options that can
be set. The first is the :through option of the has many
declaration. The :through option is used when ObjectA has a
one-to-many relation with ObjectB, ObjectC also has a one-to-
many relation with ObjectB, and the RoR programmer would
like direct access from ObjectA to ObjectC. So, rather than
writing code to first get a set of ObjectBs from an ObjectA
and then get the set of ObjectCs related to the set of ObjectBs,
the programmer can directly obtain the set of ObjectCs from
the ObjectA object.

The second option is the :conditions option, which can
be set on any of the four declarations (has one, has many,
belongs to, and has and belongs to many). The :conditions
option limits the relationship to those objects that meet a
certain criteria. The condition statement needs to be in the
form of the WHERE clause of a SQL query.

In order to express the inheritance relation in RoR, one uses
the notation ChildClass < ParentClass. Typically all
objects in the data model inherit from the ActiveRecord::Base
class. This is so the data objects inherit all the database-
connection functionality that is located in the ActiveRecord
class.

III. TRANSLATION TO ALLOY

In R̄oR d̄ata model, the definition of the class looks like:
class MyClass < ActiveRecord::Base

... end

39

We convert this to the following statement in Alloy:
sig MyClass { ... }

where sig is the Alloy keyword for declaring a class. If the
RoR class inherits from a class other than ActiveRecord::Base,
such as:

class Child < Parent ... end
The corresponding Alloy statement would be:

sig Child extends Parent { ... }
Next, we discuss translating the three basic relationships

in RoR: one-to-one, one-to-many, and many-to-many. When
expressing a binary relationship in Alloy, one can provide a
multiplicity of one, lone, some, or set which correspond
to one, less than or equal to one, one or more, and zero
or more, respectively. Thus, the mapping of the basic RoR
relationships to Alloy is as follows:

class ObjectA < ActiveRecord::Base sig ObjectA {
has one :objectB objectB: lone ObjectB
end }
class ObjectA < ActiveRecord::Base sig ObjectA {
has many :objectBs objectBs: set ObjectB
end }
class ObjectA < ActiveRecord::Base sig ObjectA {
belongs to :objectB objectB: one ObjectB
end }
class ObjectA < ActiveRecord::Base sig ObjectA {
has and belongs to many :objectBs objectBs: set ObjectB
end }

Furthermore, one has to add a fact block that connects each
pair of declarations. (By default in Alloy, they are not related
in any way.) For the one-to-many relationship this would look
as follows:

fact { ObjectA <: objectBs =
˜(ObjectB <: objectA) }
denoting that the two relations (the one from ObjectA to
ObjectB and the one from ObjectB to ObjectA) are inverses
of each other.

To translate the :through option of the has many declara-
tion, one follows the mapping as shown in the table, but instead
of having a separate fact block one can simply add a fact block
immediately following the signature of the object containing
the has many :through declaration. To translate the :conditions
option, we create a subset of objects in Alloy which the object
with the condition statement can map to. We omit the details
here due to lack of space.

IV. IMPLEMENTATION AND EXPERIMENTS

To implement a RoR data model to Alloy translator we
used a Ruby parser called ParseTree [3]. ParseTree extracts
the parse tree for an entire Ruby class or a specific method
and returns it as an s-expression. S-expressions are gener-
ated for each model file that contains a class that inherits
from ActiveRecord. We then created an s-expression pro-
cessor (which inherits from SexpProcessor, the basic s-
expression traversal class provided with ParseTree) to traverse
the generated s-expressions and translate them to a single
Alloy specification file.

We used our translator for analyzing two open-source RoR
applications, TRACKS [5] and Fat Free CRM [6]. TRACKS
is an application to manage to-do lists. The to-do items can
be organized by context or project; they can be starred and/or
tagged; and notes can be added to them or a project. The to-do
items can be given due dates, or they can be recurring items.
Fat Free CRM aims to be a lightweight solution to customer
relationship management (CRM). Fat Free CRM, offers the
management of leads (a person who is a potential customer and
usually represents an entire company), accounts (one created
per customer) and opportunities; the conversion of leads into
contacts (when a new customer is made); and the creation of
campaigns which can include lead and opportunity generation.

We generated Alloy specifications from the data models of
these applications and added assertions. We had two basic
types of assertions. One was for checking the cardinalities of
relationships, e.g. an objectA is related to one and only one
objectB or that it is possible to have an objectA is related to
no objectBs (in a zero-or-more relationship). The other type of
assertion was regarding transitive relationships. For instance,
if ObjectA is related to ObjectB and ObjectB is related to
ObjectC, and there is also a relationship between ObjectA and
ObjectC, then it is usually expected that the objectCs you get
from an objectA object going through its relationship with
ObjectB should be the same as the objectCs you get in the
direct relationship between ObjectA and ObjectC.

All except three of the assertions we checked were verified
by Alloy Analyzer. During verification we limited the scope
to 3 and the longest verification time was 111 milliseconds
per assertion. One of the failed assertions was in TRACKS
where notes belong to users and notes also belong to a project.
Projects belong to users. We asserted that the user a note
belonged to was the same user that its project was associated
with. This check failed, i.e. this constraint was not enforced
in the data model.

V. CONCLUSIONS

In this paper we showed that RoR data models can be
mapped to Alloy specifications. Based on this mapping we
implemented an automatic translator from RoR to Alloy. Our
experiments show that using our translator, assertions about
RoR data models can be verified with Alloy Analyzer.

REFERENCES

[1] Jackson, Daniel. “Software Abstractions: Logic, Language, and Analy-
sis”. Cambridge, Masachusetts: The MIT Press, 2006.

[2] Ruby, Sam and Dave Thomas. “Agile Web Development with Rails”,
Third Edition. Raleigh, North Carolina: The Pragmatic Bookshelf, 2009.

[3] “ParseTree”. http://rubyforge.org/projects/parsetree/.
[4] Marshall, Kevin, Pytel, Chad, and Yurek, Jon. “Pro Active Record:

Databases with Ruby on Rails”. New York, New York: Springer, 2007.
[5] “TRACKS”, http://getontracks.org/.
[6] “Fat Free CRM”, http://www.fatfreecrm.com/.

40

Inferring File Structure from Disk I/O Traffic
Hunter Olson, John Oliver

Electrical Engineering
California Polytechnic State University, SLO

{hdolson, jyoliver}@calpoly.edu

Abstract—Utilizing the additional metadata and usage char-
acteristics available to object based storage devices, aspects of
hard drive performance can be optimized for the data contained
on the device; however, implementing an object based storage
system requires specialized hardware and software on the host
machine and the storage device. We propose a method to identify
objects and files on a hard disk from the record of block accesses,
without any additional information provided by an OSD specific
filesystem.

I. INTRODUCTION

The Object Based Storage Device(OSD) moves many of
the physical addressing and organizational operations normally
located in the file system to the storage device itself. Using
object IDs, a host can request flexible sized objects from the
OSD without any concern over block addressing. Additionally,
the OSD is able to store metadata for the objects, allowing the
device to intelligently manage data based on usage statistics,
Quality of Service concerns, or caching characteristics. In the
case of a hard disk based OSD where performance is directly
related to the physical location of the data on the disk, this
additional metadata could be used to optimally place certain
data on specific regions of the disk platters.

These OSD advantages are typically made possible by
an OSD-aware file system on the host machine that sends
requests by object-id rather than by block addresses. The T10
committee defined a subset of the SCSI standard in 2004
to standardize communication between an OSD-enabled host
and an OSD. Although standardized, OSD is still a departure
from the filesystem standards found in consumer machines
today, so industry adoption of OSD in consumer devices is
essentially non-existent. Because there can be no plug and play
solution available without a significant push from the major
companies controlling consumer operating systems, OSD must
be implemented purely in the storage device itself for any
benefits to come to market. To facilitate this, our research is
focused on identifying file-like objects from only the standard
block- level instructions provided to hard drives from the host.

II. CLUSTERING BLOCK ADDRESSES

Given a list of instructions and the respective block ad-
dresses that they access(a trace), we seek to classify these
block accesses into objects by identifying patterns in both their
spatial and temporal locality. Looking at a graph of logical
block address(LBA) versus issue time(Fig.1), we begin to see
clear clusters of sequentially accessed blocks that very likely

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

7.9	 7.92	 7.94	 7.96	 7.98	 8	 8.02	 8.04	

Bl
oc
k	
Ad

dr
es
s	

Command	 Issue	 Time(seconds)	

Fig. 1. Block Address distribution of 320 READ commands

represent either entire files or pieces of files as seen by the
file system.

There are many widely used clustering algorithms available,
but memory and time constraints limit the effectiveness of
many of the commonly used clustering algorithms when used
with the extremely large data sets produced by a hard disk
instruction trace.

K-means clustering is a popular clustering method that
works efficiently with large data sets. However, K-means
clustering requires that the number of clusters(the K-value)
be specified at the start of the algorithm; this is not available
in our case[1]. Techniques are available to predetermine the K-
value, but most approaches optimize the k-value for modeling
the distribution of the data. This approach did not yield K-
values that correlate well with the actual number of detectable
clusters that correspond to files.

Hierarchical clustering, in which clusters are created in
a hierarchical fashion from previous clusters, is O(N2) in
both memory and time, which is not efficient enough for the
large data sets we are analyzing. The memory concerns exist
because hierarchical clustering requires a distance matrix in
which the distances between every data point and every other
data point is contained. Our dataset, being time-series data,
does not require this extensive distance analysis that results
in quadratic memory usage. Our initial work has averted the
complexity issue by reducing the dimensionality of our data.

III. CURRENT WORK

For our initial profiling efforts we focused on a recorded
trace of the hard disk section of PCMark 05, a system bench-
marking tool created by Futuremark Corporation. PCMark 05

41

2000	

2500	

3000	

3500	

4000	

4500	

5000	

7.939	 7.94	 7.941	 7.942	 7.943	 7.944	 7.945	 7.946	 7.947	

Bl
oc
k	
Ad

dr
es
s	

Command	 Issue	 Time	 (seconds)	

Fig. 2. READ commands from multiple threads

plays back a recorded trace of hard drive activity that is meant
to replicate various types of everyday computer use and the
associated disk access [2].

For an initial analysis, the time variable was removed and
a simple one-dimensional clustering analysis of the accessed
LBAs was performed on a section of the trace consisting
of approximately 48,000 commands. This initial clustering
effort looked for adjacent clusters of accessed LBAs that
exceeded a minimum size threshold and were separated from
other clusters by a minimum separation distance threshold.
The minimum size threshold keeps each random access from
appearing as a file, while the minimum separation distance
prevents a series of files stored near each other on disk
to be classified as a single object. By ignoring command
issue time, this technique does not take into the account the
effects of when the commands were issued in relation to each
other, which, when considered, should greatly improve the
correlation between the calculated clusters and actual files.

Because multiple threads can be accessing the storage
device simultaneously, considering the time dimension alone
yields inaccurate results. Fig.2 shows a series of read com-
mands over 45 seconds that are sequential in time, but clearly
represent two different files.

With knowledge of the file system layout, the storage device
is able to make simple predictions about future commands.
For example, once a request for a particular section of a file is
received in a hard disk, the device can proceed to read the rest
of the file into the buffer in anticipation of incoming sequential
read commands. Our hard disk buffer simulations suggest that
with basic pre-fetching of potential future blocks, there is well
over a 6x increase in buffer hits. Some of this benefit is already
realized in modern hard disks, but knowledge of the host file
system should allow for benefit to be maximized.

IV. FUTURE WORK

In order to efficiently score the accuracy of our object
identification algorithm, an instruction trace that includes both
the block addresses and the corresponding files must be cre-
ated. Using the logging capabilities of Linux and the included
debugfs utility, such an annotated trace can be created. Once
we have this data, we can tweak the parameters of the object

classification/clustering algorithm until the results most closely
match the known file structure corresponding to a given trace.
Given a large enough set of training data, our clustering
algorithm should be able to successfully identify most files
that are being accessed by the host.

Because object identification is based heavily on the phys-
ical location of the block accesses on the disk, a heavily
fragmented disk would significantly decrease the accuracy of
the clustering algorithm. Our initial work assumes that the
files are contiguous on the hard disk. As this assumption
is known to be false in almost all real world scenarios, the
effect of fragmentation on our algorithms performance will be
evaluated.

Further work in cluster analysis is needed to improve the
accuracy of classification of disk block ranges into their
respective files. By splitting the large traces into smaller
subsets, less efficient but more thorough cluster analysis can
be used. Once clusters are determined from these subsets, the
results can be compared and combined as needed.

V. RELATED WORK

This work is inspired by much of the object based storage
device research conducted in both industry and academia.
Correctly implemented OSD filesystems have been shown
to show performance benefits [3], which suggests that with
the ability to classify incoming blocks requests into objects,
storage devices could realize many of the same performance
benefits with a non-OSD file system.

In order to correctly classify blocks into clusters that corre-
spond to files on the host, an understanding of common read
and write patterns is useful. Carnegie Mellon University has
developed a statistical model to mimic the spatial and temporal
correlation of real-world I/O [4].

VI. CONCLUSION

We are working to identify the file structure of a system
given only the block level commands sent to the hard disk
drive. This allows for many of the benefits of object-based
storage devices to be embedded into the storage device without
any additional complication added to the host filesystem.

Given the ability to identify files from a set of block level
instructions, a storage device could optimize its performance
by combining traditional file system optimizations with the
low level control of the hard drive controller, resulting in
higher performance than either mechanism working alone.

REFERENCES

[1] Xu, Rui, and Wunch, Donald. (2005). Survey of clustering algorithms,
IEEE Transactions on Neural Networks, 16 (3) 645-678.

[2] S. Niemela, “PCMark05 Whitepaper,” Futuremark Corporation, June
2005.

[3] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long, “Obfs: A file
system for object-based storage devices,” Apr. 2004, pp. 283–300.

[4] M. Wang, A. Ailamaki, and C. Faloutsos, “Capturing the spatio-temporal
behavior of real traffic data,” Perform. Eval., vol. 49, no. 1-4, pp. 147–
163, 2002.

42

1

A Study on Social Network Spam
Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna

Department of Computer Science, UC Santa Barbara
{gianluca, chris, vigna}cs.ucsb.edu

Abstract—Social networking has become a popular way for
users to meet and interact online. Users spend a significant
amount of time on popular social network platforms (such as
Facebook, MySpace, or Twitter), storing and sharing a wealth of
personal information. This information, as well as the possibility
of contacting thousands of users, also attracts the interest of at-
tackers. In particular, attackers might find personal information
valuable for identity theft or to drive targeted spam campaigns.
In this paper, we analyze to which extent spam has entered social
networks. More precisely, we analyze how spammers who target
social networking sites act. To collect the data about spamming
activity, we created a large and diverse set of “honey-profiles”
on three large social networking sites, and logged the kind of
contacts and messages that they received. We then analyzed the
collected data and identified anomalous behavior of users who
contacted our profiles. Finally, we developed techniques to detect
spammers in social networks, and aggregated their messages in
large spam campaigns.

I. MOTIVATION

Over the last few years, social networking sites have become
one of the main ways for users to keep track and communicate
with their friends online. Sites such as Facebook, MySpace,
and Twitter are consistently among the top 20 most-viewed
web sites of the Internet, ranked just behind the most popular
search engines. The many large social networks are even
launching mobile platforms that allow users to access their
services from mobile phones, making the access to these sites
ubiquitous.

The tremendous increase in popularity of social networking
sites allows them to collect a huge amount of personal infor-
mation about the users, their friends, and their habits. Unfor-
tunately, this wealth of information, as well as the ease with
which one can reach many users, also raised the interest of
malicious parties. In particular, spammers are always looking
for ways to reach new victims with their unsolicited messages.

From a security point of view, social networks have unique
characteristics. First, information access and interaction is
based on trust. Users typically share a substantial amount
of personal information with their friends. This information
may be public or not. If it is not public, access to it is
regulated by a network of trust. In this case, a user allows
only her friends to view the information regarding herself.
Unfortunately, social networking sites do not provide strong
authentication mechanisms, and it is easy to impersonate a
user and sneak into a person’s network of trust. Moreover, it
often happens that users, to gain popularity, accept any friend-
ship request they receive, exposing their personal information
to unknown people. In other cases, such as MySpace, the
information displayed on a user’s page is public. Therefore,
anyone can access it, being friend or not. Networks of trust are

important from a security point of view, because they are often
the only mechanism that protects users from being contacted
by unwanted entities.

Another important characteristic of social networks is the
different level of user awareness with respect to threats. While
most users have become aware of the common threats that
affect the Internet, such as e-mail spam and phishing, they
usually do not show an adequate understanding of the threats
hidden in social networks. This behavior might be abused
by spammers who want to advertise web sites, and might be
particularly harmful to users if spam messages contain links
to malicious pages.

II. HONEY PROFILES

In order to study the phenomenon of spam on social
networks, we created 300 fake profiles on three popular
social networking sites (Facebook, MySpace, and Twitter),
and observed the kind of traffic they received. Due to their
similarity in use to honeypots, we call these accounts honey
profiles. After having created our honey-profiles, we ran scripts
that periodically connected to those accounts and checked
for activity. We decided that our accounts should act in a
passive way. Therefore, we did not send any friend requests,
but accepted all those that were received.

In a social network, the first action a malicious user would
likely execute to get in touch with his victims is to send them
a friend request. This might be done to attract the user to the
spammer’s profile to view the spam messages (on MySpace)
or to invite her to accept the friendship and start seeing
the spammer’s messages in her own feed (on Facebook and
Twitter).

After having acknowledged a request (i.e., accepted the
friendship on Facebook and MySpace and started following
the user on Twitter), we logged all the information needed
to detect malicious activity. More precisely, we logged every
email notification received from the social networks, as well
as all the requests and messages seen on the honey-profiles.

III. SPAMMER FEATURES

Network Overall Spammers
Facebook 470 73
MySpace 15 8
Twitter 341 320

TABLE I
FRIEND REQUESTS RECEIVED ON THE VARIOUS SOCIAL NETWORKS.

43

2

Network Overall Spammers
Facebook 4,413 638
MySpace 20 0
Twitter 6,935 6,180

TABLE II
MESSAGES RECEIVED ON THE VARIOUS SOCIAL NETWORKS.

During our observation, we found out that spammer ac-
counts differ from legitimate ones, and developed some fea-
tures, we used later on for spam detection on these networks.

First of all, spammers usually send friend requests (or ”start
following”, using the Twitter jargon) a large number of users,
hoping that a fraction of these will follow them back, starting
seeing the spam content on their walls. As a result, spam
profiles usually have an unbalanced ratio between friends
requests sent and actual friends. On Twitter these numbers
are public, and the following / followers ratio constitutes a
good feature for detection.

Another useful feature would be the ratio of URLs in the
messages sent, compared to the overall number of messages.
Since spammers have, by definition, to deliver some adver-
tisement, it is likely that many of their messages will contain
URLs.

From further observation of profiles contacting our honey
accounts, two more features proved to be useful for spam
detection. The first one is message similarity, which leverages
the ideadetection. The rst one is message similarity, which
leverages the idea that spammers send out messages similar
in content. We also dened a friend choice feature as well, that
attempts to detect whether a prole used a list of names to pick
its friends or not. We dene this feature as the total number
of distinct names appearing in the friend list, divided by the
number of friends. Our observation showed that legitimate
proles have values of this feature close to one, while spammers
might reach values of 2 for it.

IV. SPAM DETECTION AND EVALUATION

We then leveraged our observation of spam behavior to
build a system able to detect spammers on social networks.
Given the described set of features, we built a system able
to detect spammers in real time on Twitter. We tested our
Twitter system by actively collaborating with Twitter itself.
Whenever we detected a spammer, we submitted it to them
to be checked. During a period of 3 months, from March 06,
2010 to June 06, 2010, we submitted 15,932 proles, and only
75 were detected by them as false positives. All the other
submitted proles were deleted. In order to evaluate the false
positive ratio, we randomly picked 100 proles, classied as
legitimate by our system. We then manually checked at them,
nding out that 6 were false negatives.

V. CAMPAIGNS

After having identied single spammers, we analyzed the
data to identify larger-scale spam campaigns. With spam
campaign we refer to multiple spam proles that act under
the coordination of a single spammer. We consider two bots

Fig. 1. Activity of spam campaigns over time.

posting messages with URLs pointing to the same site as
being part of the same campaign. Some campaigns showed
a large number of bots each sending a few messages per day,
while others send many messages using few bots. In addition,
some bots sent malicious content with each message, while
others acted in a stealthy way, sending out a minority of spam
messages, disguised among legitimate-looking messages. This
behavior leads signicantly different outcomes. Greedy bots
that send spam with each message are easier to detect by the
social network administrators. On the other hand, a low trafc
spam campaign is not easy to detect. Activity of bots from
different campaigns is shown in Figure 1. Each row represents
a campaign. For each day in which we observed some activity
from that campaign, a circle is drawn. The size of circles varies
according to the number of messages observed that day. As
can be seen, some campaigns have been active over the entire
period of the study, while some have not been so successful.
The bot lifetime is affected by the campaign modus operandi
as well. Some campaigns we observed had an average bot
lifetime of more than 100 days, while some of them were
easily detectable, and the bots belonging to them were deleted
after a few days.

REFERENCES

[1] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda , All your contacts are
belong to us. Automated Identity theft attacks on social networks, In
ACM WWW conference, 2010.

[2] G. Brown, T. Howe, M. Ihbe, A. Prakash, and K. Borders,, Social
Networks and Context-aware Spam. In ACM Conference on Support-
ive Collaborative Work, 2008.

[3] T.N. Jagatic, N.A. Johnson, and M. Jakobsson, Social Phishing. In
Comm. ACM, 50(10):94-100.

[4] B. Krishnamurthy, P. Gill,and M. Aritt, A Few Chirps on Twitter. In
USENIX Workshop on Online Social Networks, 2008.

[5] S. Moyer and N. Hamiel., Satan is on My Friend List: Attacking
Social Networks, 2008.

[6] Harris Interactive Public Relations Research, A Study on Social
Networks Scams, 2008.

[7] S. Webb, J. Caverlee, and C.Pu, Social Honeypots: Making Friends
with a Spammer Near You. In Conference on Email and Anti-Spam,
2008.

[8] S. Yardi, D. Romero, G. Schoenebeck, and D. Boyd, Detecting Spam
in a Twitter Network. In First Monday, 15(1), 2010.

44

Characterizing the Potential of Chip-Scale
Plasmonic Interconnects

Hassan M. G. Wassel Mohit Tiwari Luke Theogarajan∗ Fred T. Chong Tim Sherwood
Department of Computer Science ∗Department of Electrical and Computer Engineering

{hwassel, tiwari, chong, sherwood}@cs.ucsb.edu ∗ltheogar@ece.ucsb.edu

I. INTRODUCTION

In the multi and many core era, communication is cru-
cial to the system performance. Therefore, network-on-chip
(NOC) approaches were proposed to regularize the design
of on chip communication. Nanophotonics interconnects have
been proposed in the recent few years as a replacement of
global metal interconnect because of their almost distance-
independent power consumption and low-latency and high
bandwidth. However, photonic components have their limi-
tations: diffraction-limited sizes, temperature dependence and
cross-talk and bend losses. First, nanophotonic components
are governed by the diffraction limit which dictates that light
cannot be confined in a space smaller than λ/2n where λ
is the freespace wavelength and n is the refractive index of
the material. This means that the size of waveguides and
modulators and ring filters are in the micrometer scale because
of usage of C-band around 1550 nm wavelength. This size
mismatch between micrometer-scale photonic components and
nanometer-scale electronic ones limits the integration viability
of both technologies on the same chip using the same process.
This relatively bigger size components have higher capacitance
which requires more power consumption to drive and limits
the speed at which it can operate. For example, a photonic
link is expected to have around 150 fJ/bit electric and elec-
tooptical components energy consumption per bit [1] which
is clearly over the estimated viability requirement of 10 fJ/bit
per device [4]. Second, photonic components is temperature-
dependent which is exploited in the mirco-ring modulators that
their resonance range is adjusted using heating. This heating
requirement is estimated to consume around 100 fJ/bit [1].
These two major power consumption components limit the
minimum distance at which nanophotonic waveguides can be
more power efficient than electrical signaling, even excluding
off-laser generator power consumption. Third, because of low
confinement, bend losses and cross-talk are a problem for
nanophotonic devices. The minimum pitch of a Si waveguide
is 5.5 µm.

II. SURFACE PLASMON POLARITONS BACKGROUND

Surface plasmon polaritons (SPP) are electromagnetic
waves that are coupled to free electron collective oscillations
in a metal. When a light beam is incident a metal-dielectric
interface with a certain angle, surface plasmon polaritons are
excited and will propagate along the surface of the metal.
Interestingly, surface plasmons excited at the interface of a

metal and dielectric will maintain the frequency of the exciting
light, while at the same time have a much shorter wavelength.
These shorter wavelengths allow the construction of nanoscale
waveguides that tightly confining even very high frequency
electromagnetic waves, in a way side-stepping traditional
diffraction limits. Of course nothing comes for free, and SPP
propagation is limited by both metal absorption (i.e. ohmic
losses) and free-space radiation. Noticing the importance of
this emerging field, the term “plasmonics” was coined in
2000 . During the last decade, the plasmonics field has made
significant progress in improving the the propagation distances
of SPP modes and recently, we have seen a flurry of new work
on both active components and plasmonic sources.

III. PLASMONICS/PHOTONICS MODEL

In this section, we evaluate the potential of plasmonics using
an energy model that compares the energy-per-bit for the four
technologies: electrical wires, photonics, fully plasmonic and
hybrid photonic/plasmonic links.

A. Electrical Power Area Estimation

We used community standard Orion 2.0 to estimate the
power consumption of electrical links. We used 32 nm at Vdd
= 0.9 V high performance transistors. We limited the frequency
by 3 GHz because that is the frequency at which routers power
consumption is modest. Higher frequencies consume order of
1 W per router which is extremely prohibitive in a modern
many-core interconnect. Orion reports power consumption
that we divide over the clock rate to get the energy per bit
power consumption. We assumed activity factor of 1 in all
technologies.

B. Photonic Link Power Estimation

A photonic link consists of an off-chip laser source, trans-
mitter, waveguide and a receiver. Power consumption is di-
vided in static laser power and dynamic power consumption
depending on transmitted bits. Laser power is estimated by
adding all optical losses along the path and using the detector
sensitivity (minimum detected power) to calculate the required
laser power. Transmitters are ring resonator modulators driven
by an analog circuit and receivers are a Ge photodetector
connected to a TIA and an amplifier. Using parameters of
analog components at 22 nm technology from [1], we estimate
that analog components will consume 68 fJ/bit. Modulator
is estimated to consume 82 fJ/bit at 32 Gbps as in [3] and
100 fJ/bit heating power as in [1]. For the receiver, we

45

Plasmonic Modulator Nano-‐wire Photo-‐detector

Modulator
Driver

Electrical
Signal

Receiver
Front-‐end

Light
Source

Photonic-‐to-‐plasmonic
Coupler

Plasmonic-‐to-‐photon Coupler

Silicon Photonic
waveguide

Electrical
Signal

Fig. 1. Hybrid Link: By using a plasmonic modulator and silicon photonic
waveguide, we can achieve the best of both world: long range propagation, and
low power consumption and high performance modulation. Couplers converts
photons into SPP and vice versa.

use the nano-wire photo-detector because it is not specific
to plasmonics. That means that we assume 36 nW detector
sensitivity.

C. Plasmonic Link Power Estimation

Because of the limited propagation distance of plasmonic
waveguide to around 100 µm, we decided to connect more
than one plasmonic link in order to achieve higher propagation
distances. This means that we will have a modulator and
a detector for each link, with detector of the current link
driving the modulator of the next link. Analog components
are modeled as in the photonic link and they are repeated
for each sub-plasmonic link. Laser power is provided by a
single photonic Si-waveguide for each sub-link and using
a coupler between the plasmonic and photonic waveguides.
We conservatively assume 4 dB coupler loss although lower
coupling efficiencies has been demonstrated. We can calculate
laser power consumption for each sub link. Dynamic power
consumption is calculated assuming same elecrtic compo-
nents used in the photonic link and the compact plasmonic
modulator[2]. Number of sub-links is determined by the link
length divided by the max propagation distance of a plasmonic
waveguide. We assume plasmonic link loss of 0.2 dB/µm.

D. Hybrid Link Power Estimation

Finally, we propose exploiting active plasmonic modulation
to modulate light in a photonic waveguide as suggested in
[2] by coupling the the Si conventional waveguide to the
modulator and use the modulated plasmon to couple it back
into photons. This approach saves a lot of heating power
required for photonic modulators that also consumes at least
one order of magnitude higher energy per bit. It uses the same
electric components and same photo-detector.

E. Characterization of Potential Applications

Using these models, we estimated the energy per bit of
all four links by calculating the power consumption of all
of them and dividing that by the corresponding bandwidth.
We assume bandwidth of 100 Gbps for plasmonic and hybrid
links, 32 Gbps for photonic links and 3 Gbps for electrical
links. Operating photonic and plasmonic links at these high
speeds assumes the availability of optical clock. Figure 2
shows the energy per bit consumption against the length of the
link for all four configurations. Plasmonic link are modeled
using 1 fJ/bit modulator driver and 10 fJ/bit receiver front-
circuit and the parameters given in [1]. Plasmonic links
cannot be more energy efficient than electrical wires at short

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En
er

gy
 p

er
 b

it
(fJ

)

Wire Length (µm)

Electrical
Photonic

Hybrid
Plasmonic

Fig. 2. Link length Vs Energy per bit for different technologies:
electrical, photonic, plasmonic and hybrid. It is clear that electrical
signaling is more efficient for any link of less than 500 µm length.
Beyond that, hybrid links are the most energy efficient.

distances nor than photonic links at long distances because
of two reasons. First, electrical links are really efficient at
short distance where plasmonics don’t suffer from the linearity
of adding new electric components for each 100 µm. Sec-
ond, plasmonics suffer badly from distance-dependent power
consumption where photonics does not. However, between 1
mm and 1.5 mm, a plasmonic link shows comparable power
consumption to electrical wires.

Using the plasmonic modulator with the conventional
waveguide (hybrid) reduces the distance at which photonics
become more energy efficient than electrical from 1.5 mm to
less than 0.5 mm. This is an interesting result because we will
use the best of both worlds, modulating using a small efficient
plasmonic device and propagating the signal in a low-loss
medium. It is worth noting that we lose the ability to support
wavelength-division multiplexing because of the introduction
of the plasmonic modulator that lies in the signal path whether
it is modulating or not unlike ring-resonators that don’t block
the light if it is off-resonance. However, bandwidth loss is not
big because of the ability of higher speed modulation (100
Gbps) and the space saved by the bulkier ring modulators.
In order to study the effect of electric power consumption on
hybrid links competitiveness, we did a sensitivity analysis in
which we varied electric components power consumption from
12 to 100 fJ assuming 4 dB coupling losses. Results shows
that for links of length less than 500 µm, electrical links are
more energy efficient regardless of how aggressive the hybrid
is. On the other hand, at 1000 µm hybrid is more efficient
even with 100 fJ EPB. REFERENCES

[1] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth,
M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram,
V. Stojanovic, and K. Asanovic. Building many-core processor-to-dram
networks with monolithic cmos silicon photonics. IEEE Micro, 29(4):8–
21, 2009.

[2] W. Cai, J. White, and M. Brongersma. Compact, high-speed and power-
efficient electrooptic plasmonic modulators. Nano Letters, 9(12):4403–
4411, 2009.

[3] N. Kirman and J. F. Martı́nez. A power-efficient all-optical on-chip
interconnect using wavelength-based oblivious routing. In ASPLOS ’10:
Proceedings of the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems, pages 15–28, New
York, NY, USA, 2010. ACM.

[4] D. Miller. Device requirements for optical interconnects to silicon chips.
Proceedings of the IEEE, 97(7):1166 –1185, July 2009.

46

Detection of Botnet C&C Communication Using
Potential Signature Extraction

Ali Zand, Christopher Kruegel, Giovanni Vigna, and Xifeng Yan
Computer Science Department

University of California, Santa Barbara
{zand, chris, vigna, xyan}@cs.ucsb.edu

Abstract—Botnet, as a group of compromised machines under
control of a single malicious entity, is a serious threat to
online security. The fact that botnets by definition get their
commands from a single entity could be leveraged to fight
them by finding these entities. Detecting command and control
messages is a complicated task, because botmasters sometimes
use highly sophisticated methods to hide their command and
control connections and make them look like legitimate traffic.
In this paper a new pattern extraction method has been presented
and used to find command and control communication in Anubis
generated traffic.

I. INTRODUCTION

A botnet is a collection of compromised machines con-
trolled by the same command and control center. Nowadays,
botnets are serious security threats to computer users and
companies security. They are generally used to compromise
other hosts, run DDoS attacks, perform fraud (like phishing,
or click-fraud), steal private information (like bank accounts),
or offer illegal services (like spamming).

The botmaster communicates (sends commands and re-
ceives information) with his/her bots using Command and
Control (C&C) channel. Nowadays, P2P, IRC and HTTP are
the most popular protocols for implementing botnet C&C
channels [1].

One way to counter botnets is to detect their command and
control communication and use this information to either filter
the communication, to cut the commands from reaching the
victims, to track the command and control servers and shut
them down, track and prosecute the botmasters, take over the
botnet, study the botnet (Stone-Gross et. al. [1]) or to disinfect
the bots by issuing approperiate commands.

A signature extraction method, for detecting command
and control communication in malicious network traffic, is
presented in this paper. This type of analysis does not rely on
synchronized activity of the bots, which makes it applicable to
both real networks and also emulated malware traffic. To use
this system we should have access to network traffic that has
a significant amount of C&C traffic. This type of traffic could
be obtained from honeypots, malware emulation tools (like
Anubis), and also by filtering out known good traffic from a
large network traffic data. This signature extraction method is
most suitable for IRC and HTTP-based command and control
channels.

Generalized suffix tree was used to extract all the frequent
strings in connection payloads. Then, the connection clustering
information was used to filter out non-distinguishing strings.
A distinguishing string, is a string which appears frequently in
one class of connections and infrequently in other ones. Non-
distinguishing strings can not be good signatures, because they
appear in a number of different classes of traffic, and they can
not distinguish the application (for example a specific C&C
protocol) generating the traffic.

Our hypothesis is that the connections from the same
command and control communication protocol is recognizable
from non-C&C applications and maybe other C&C protocols
based on traffic characteristics. To cluster network connec-
tions, K-means algorithm was used on a set of statistical
features extracted from the connections. Anubis network traffic
was used as network traffic source. Anubis is an online
dynamic malware analysis tool developed by the International
Secure Systems Lab [2]. Anubis runs the submitted suspicious
programs in an emulated environment and records the program
interaction with the operating system and the generated net-
work traffic. Currently, Anubis does not perform any type of
analysis on the generated network traffic.

II. CONNECTION CLASSIFICATION FOR BOTNET
DETECTION

We use a combination of frequent string extraction and
connection clustering to extract distinguishing signatures for
C&C messages. The whole process of signature extraction
could be seen in Figure 1. In the subsequent subsections,
different steps are described.

A. Common String Extraction

A Generalized Suffix Tree was used to extract all the
common substrings with length more than 4 that occure more
than 14 times in the traffic data. Many of the occuring patters
are the ones that are indicative of the transport protocol which
we are not interested in (strings like ”HTTP”, ”GET”, ”POST”,
etc.). The connection clustering results were used to filter
out the non-distinguishing patterns. The assumption is that
different transport protocol patterns will exhibit different traffic
characteristics, because they are carrying different applications
data, and hence, they will apear in a lot of clusters.

47

Anubis Network

Trace Files

Extract

Features

Statistical

Features

Connection

Content

Clustering

Connections

Common String

 Extraction

Find Interesting

 Patterns

Interesting

 Strings

String Internal

Clustering

Multi-Part

 Patterns

String External

 Clustering Multi-Connection

 Multi-Part Patterns

Fig. 1. Process Flowchart

B. Traffic Clustering

K-means clustering algorithm was used on the following
statistical features of connections: connection duration, num-
ber of bytes sent by client/server (2 attributes), variance of
data size sent by client/server (2 attributes), average/variance
of inter-arrival time of the packets (2 attributes), number of
packets with sizes [0-99, 100-199, 200-299, 300-399, 400-
499, >=500] (6 attributes), whether the connection is initiated
from/to remote site (two attributes), and the number of packets
sent by client/server (two attributes). The Euclidean distance
function was used as the distance function of clustering
algorithm.

C. Non-Distinguishing String Removal

In this phase, the non-distinguishing strings were removed
from the result set. Normalized entropy of the number of
appearances of the string in different clusters was used to mea-
sure the quality of the patterns. The normalized entropy En

could be computed using the following formula: En = Ent
Entmax

where Entmax = Ent(unidist) where Ent(unidist) is the
entropy of the given string being distributed as uniformly as
possible (all clusters having the same number of strings or at
most 1 difference).

We used different values for normalized entropy threshold,
and computed precision and recall of the pattern extraction
algorithm and computed the optimum threshold value (maxi-
mizing F −measure = 2× precision×recall

precision+recall [3]).
We filter out the strings with normalized entropy greater

than this threshold (in this case 0.7).

D. Combining Patterns

In this phase the strings that appear in the same set of
connections are clustered together to represent a potential
signature/pattern. This way, smaller signatures appearing in
the same connections are combined to build larger signature
strings which leads to less number of signatures with larger
size, which makes the task of analyzer much easier to inspect
these signatures. We used a modified version of Zamir et. al.
[4] document clustering algorithm.

Pattern combination is done in three different ways: Com-
bining patterns that appear in the same set of connec-
tions/malwares/destination addresses. The patterns that occur
in the same set of connections can be a candidate for a
signature for that type of connections. These patterns, when
combined, form a multi-part pattern which is comprised on
several strings that appear in different parts of the same
connection. The patterns that appear in the same set of traffic
files, are the patterns generated by the same type of malware,
and can be a good candidate for a multi-connection signature.
A multi-connection signature is comprised of several multi-
part signatures from different connections. An example can be
a signature for a bot, with some strings in HTTP connection
and some strings in SMTP traffic. The patterns that appear in
the connections with the same destination address, are good
candidates for multi-version malware detection.

III. CONCLUSIONS AND FUTURE WORK

A new signature extraction approach for botnet C&C mes-
sages was presented in this paper. Using this method we
were able to detect known botnet C&C signatures in Anubis
logs. The effectiveness of the approach will be significantly
increased, if the running time of the samples increases and if
each sample is executed several times. Unfortunately currently,
because of lack of resources, increasing execution time, or
several-time execution is out of question. This approach could
be used only if the C&C messages are not encrypted.

REFERENCES

[1] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
analysis of a botnet takeover,” in CCS ’09: Proceedings of the 16th ACM
conference on Computer and communications security. New York, NY,
USA: ACM, 2009, pp. 635–647.

[2] U. Bayer, A. Moser, C. Kruegel, E. Kirda, U. B. (b, A. Moser, C. Kruegel,
E. Kirda, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious code,”
Journal in Computer Virology, vol. 2, pp. 67–77, 2006.

[3] C. J. van Rijsbergen, Information Retrieval. Butterworth, 1979.
[4] O. Zamir and O. Etzioni, “Web document clustering: a feasibility demon-

stration,” in SIGIR ’98: Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval.
New York, NY, USA: ACM, 1998, pp. 46–54.

48

Towards efficient medium access for 60GHz
networks

Mariya Zheleva, Ashish Sharma, Sumit Singh, Elizabeth Belding, Upamanyu Madhow
University of California, Santa Barbara

{mariya, asharma, sumit, ebelding}@cs.ucsb.edu {madhow}@cs.ucsb.edu

I. PROBLEM AND MOTIVATION

Millimeter-wave networks have emerged as an important
research direction. This drive is a result of the advancement in
the millimeter-wave circuit design, coupled with the growing
need for short range high bandwidth wireless deployments.
Networks operating millimeter-wave range are able to provide
gigabit links in various wireless deployments by utilizing
cheap distributed solutions.

The wave propagation in 60 GHz is fundamentally different
from that in the 2-5 GHz range. First, these high carrier
frequencies are significantly influenced by the Oxygen absorp-
tion, which results in high path loss. That is why we limit the
radio coverage to a radius of 100m. Second, the transmission
in the millimeter-wave range is highly directional, which
introduces two important advantages: (i) it alleviates the high
path loss caused by the Oxygen absorption and (ii) besides
time and frequency, it fully utilizes a third degree of freedom:
space.

Because of the directionality of 60 GHz antennas, the
nodes are able to sense only in one direction at a time. This
property causes the effect of deafness between neighbors. As
a result, the traditional media access control approaches based
on carrier sensing are infeasible for 60 GHz communication.
Successful transmission demands that the transmitter and
receiver antennas be both beam-formed towards each other
at the time of transmission. Thus, precise node coordination
is necessary for successful communication.

We develop a system that utilizes MDMAC [1] - a de-
centralized MAC protocol for 60 GHz networks. It pro-
vides a method for implicit node coordination, that allows
convergence to TDM-like schedules for wireless networks
in the millimeter-wave spectrum. We implement MDMAC
framework on a commodity 802.11 hardware to evaluate its
performance in a real testbed as well as to have the software
support developed and ready for deployment once there is an
actual 60 GHz platform available.

II. BACKGROUND AND RELATED WORK

Previous work in the area covers interference analysis for
60 GHz networks [2]. The authors prove a level of link
abstraction, that enables scheduling of transmissions between
neighbors in the case of deafness - a characteristic that
MDMAC design relies on.

III. APPROACH AND UNIQUENESS

To the best of our knowledge, this is the first project
that aims to investigate a MAC protocol suitable for highly
directional 60 GHz networks via actual testbed study. We
implement MDMAC [1] on a testbed of three x86 PCs running
Linux and CLICK modular router [3]. The machines are
equipped with Atheros 802.11a/b/g wireless cards and the
MadWiFi driver [4], which allows higher wireless interface
reconfigurability, needed for our implementation.

In the presence of immediate neighbor deafness, each node
keeps track of the packet transmission history to achieve
implicit coordination with the others. This history-awareness
is referred to as memory-driven implicit node coordination.

Precise node coordination in a fully decentralized system
demands accurate time synchronization. For this implementa-
tion we are utilizing ntp synchronization via Ethernet, which
provides high enough level of accuracy.

In MDMAC, time is divided into frames, and frames into
slots. For the purpose of implicit node coordination, each
slot is assigned a transmission state, that defines the allowed
sender/receiver interaction. There are four possible states -
Transmit (T), Receive (R), Idle (I) and Blocked (B).

Fig. 1: Utilizing MDMAC.

A running example, illustrating implicit node coordination
is presented in Figure 1. Node A attempts transmission to
node B and it picks a free slot from its built-in transmission
table. On successful reception of this packet, B sends an ACK
back to A. The current slot is then marked as dedicated for
transmission in both A and B. The process of packet/ACK
exchange between A and B continues in this particular slot
in the subsequent frames, until (i) there are no more packets
left to be transmitted, (ii) B fails to send an ACK, or (iii)
A fails to send a packet. After an initial set of iterations over
the frame, all available slots are dedicated to the existing links

49

and eventually the network converges to TDM with no explicit
coordination.

There are two main drawbacks of the outlined protocol,
which limit the fairness and effectiveness of the communica-
tion. First, the lack of free slots for new nodes, causes what we
refer to as unfair locked transmission schedule. Second, this
solution does not address the problem for dynamic resource
reallocation in case of variable link utilization, which might
lead to inefficient medium access.

To prevent locked transmission schedules, nodes randomly
reset their reserved and blocked slots. MDMAC also utilizes
a mechanism for explicit state reset, which assures that in
case of slot allocation overload, the most demanding links
will be taken off slots first. Finally, for the needs of resource
reallocation, each node keeps track of the utilization of its
outgoing links and based on the information adjusts the
number of utilized slots.

IV. RESULTS AND CONTRIBUTIONS

In a TDMA settings the accuracy of slot transition is
extremely important. Miscalculation of the current slot might
result in severe packet losses and compromise the time-
divided transmission scheme. To meet the high slot transition
requirements we implement a scheduler, which makes decision
for transmission towards specific neighbor based on the current
slot.

A node running MDMAC supports multiple outgoing
queues - one per neighbor. We have implemented these queues
at the software level, so that the scheduler is able to pull
packets from the corresponding queue once it determines
the neighbor to transmit to. The multiple queues concept is
also utilized by the explicit state reset and slot reallocation
mechanisms.

To be able to maintain transmission states, all nodes in
the network support data structures with information about
the state of each slot towards each neighbor (Fig.1). As our
slot state updates are based on packet and acknowledge-
ments transmission history we implemented a software-level
acknowledgement scheme. We also designed a data structure
which maintains the slot-state allocation, as well as a mapper,
which keeps track of the packet transmission and updates the
data structure accordingly.

As the time scheduling is performed at the software layer,
one of the major challenges that we tackle is the control over
transition of packets from the software queues to the hardware.
Hardware queues could store up to few hundred packets and
the actual transmission is done at best effort, which might
not be aligned with the upper layer schedule. To address
this problem we estimated an upper bound of the number
of packets that could be scheduled for transmission within
a single slot. Our estimation is based on the expected time for
transmission of one packet of certain size. In addition we have
disabled random back off and retransmissions at hardware
level to enhance the performance of our slotted transmission
scheme.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140
Number of packets per slot

time, [ms]

N
um

be
r

of
 p

ac
ke

ts

Neighbor B
Neighbor C

Fig. 2: MDMAC transmission accuracy.

In our experiments, the time frame is 20 ms and consists
of 5 equal slots. Figure 1 depicts our actual test scenario, in
which node A transmits to node B in slots one and four and
to node C in slot five. Figure 2 shows the number of packets
transmitted for one minute within each dedicated slot. As we
perform best effort scheduling, the packets are pulled from the
corresponding queue as soon as the proper slot comes. This
explains the peaks in the beginning of each slot. The results
show that transmission is accurately done as per the schedule.
As expected, the number of packets sent towards B (assigned
two slots) is almost twice as the number sent to C (assigned
one slot).

Our contributions in this work are as follows: (i) we make
an actual deployment to evaluate the performance of medium
access protocol designed for directional 60 GHz networks,
(ii) we implement the software support for a millimeter-wave
network access scheme, so that it is ready for deployment
once a millimeter-wave platform is developed, (iii) we provide
a software-level control mechanism, not to allow hardware
limitations to compromise our slotted transmission scheme.

REFERENCES

[1] Singh S., Mudumbai R., Madhow U., ”Distributed coordination with deaf
neighbors: efficient medium access for 60GHz mesh networks”, IEEE
INFOCOM 2010, San Diego, CA, Mar. 2010.

[2] Mudumbai R., Singh S., Madhow U. ”Medium access control for 60GHz
outdoor mesh networks with high directional links”, IEEE INFOCOM
2009, Mini Conference, Rio de Janeiro, Brazil, Apr. 2009.

[3] Morris R., Kohler E., Jannotti J., Kaashoek M. ”The Click Modular
Router”, ACM Transactions on Computer Systems (TOCS), Volume 18
, Issue 3, August 2000.

[4] http://madwifi-project.org/

50

http://gswc.cs.ucsb.edu

