

GSWC 2012

Proceedings of

The Seventh Annual Graduate
Student Workshop on Computing

October 5th, 2012
Santa Barbara, California

Department of Computer Science
University of California, Santa Barbara

http://www.cs.ucsb.edu

Organized By

Adam Doupé, Chair

Gianluca Stringhini, Vice-Chair

Mariya Zheleva, Industry Liaison

Ana Nika, Financial Coordinator

Nazli Dereli, Proceedings Coordinator

Sean Maloney, Web Coordinator

Dhilung Kirat, General Committee

Adam Lugowski, General Committee

Ali Zand, General Committee

Yun Teng, General Committee

Lara Deek, General Committee

Stephen Gauglitz, General Committee

Vineeth Kashyap, General Committee

Hassan Wassel, General Committee

Siladitya Dey, General Committee

Jane Iedemska, General Committee

Arijit Khan, General Committee

Thanks to

Platinum Supporters

Silver Supporters

Bronze Supporters

Keynote Speaker

Gus Class, Developer Advocate, Google

Gus is a developer advocate for the Google+ platform.
Before joining Google, he worked on Microsoft Windows,
Zune, Xbox, and developed anti-spam and web-based email
software. You can find out more about him on Google+ at
http://gusclass.com/+

Discussion Panel

Luca Bertelli, Software Engineer, Google

Luca received the D.Ing. degree (summa cum laude) in electronic
engineering from the University of Modena, Italy, in 2003, and
the M.S. and Ph.D. degrees in electrical and computer engineering
from the University of California, Santa Barbara, in 2005 and 2009,
respectively.
During the summer of 2008, he was an intern at Google Research,
working on salient object detection. After graduating he
joined Mayachitra and later moved to Like.com, always working on
computer vision related problems.
He is now at Google where he is a tech lead within Google Shopping,
working on making your online shopping experience as amazing as
possible!

Chad Sweet, Software Engineering Manager,
Qualcomm

Chad Sweet has been with Qualcomm for more than 14 years and is
currently leading a project to apply biologically inspired neural
networks to robotics applications in Corporate R&D. He has a BS in
Computer Engineering from Vanderbilt University, and has a number
of patents granted or pending in the area of wireless technology.

Kevin Haas, Principal Development Manager, Bing
Social, Microsoft

Kevin Haas earned dual Bachelors degrees in Computer Science and
Mathematics from UC Santa Barabara, and a MS from Stanford
University, where he studied databases and operating systems. Since
graduating, he’s held a variety of software development and
management positions at IBM, Yahoo, and Microsoft. Currently, he
leads Bing Social’s engineering team, and responsible for the
integration of data from Facebook, Twitter, and other social
networks; and dabbles with unstructured text analysis and large-scale
entity graphs on the side.

Table of Contents

Security Session

• Jarhead 1
Johannes Schlumberger

• Message In A Bottle: Sailing Past Censorship 3
Luca Invernizzi, Christopher Kruegel, Giovanni Vigna

• Shellzer: A Tool for the Dynamic Analysis of Malicious Shellcode 5
Yanick Fratantonio, Christopher Kruegel, Giovanni Vigna

Vision Session

• User-Perspective Augmented Reality Magic Lens 7
Domagoj Baricevic, Cha Lee, Matthew Turk, Tobias Hollerer

• Sketch Recognition (Practically) Anywhere with SPARK 9
Jeffrey Browne, Timothy Sherwood

• Catch Me If You Can: Pursuit and Capture in Polygonal
Environments with Obstacles 11
Kyle Klein, Subhash Suri

Social and Quantum Session

• Hidden Subgroup Problem for Semi-direct Product Groups 13
Siladitya Dey

• A Distance Based Algebra for Boolean Expression Queries
over Large Networks 15
Arijit Khan

• Identifying User Groups and Topic Evolution in Web Discussions 17
Theodore Georgiou

Wireless Session

• Delay Tolerant Disaster Communication Using the One Laptop
Per Child XO 19
Daniel Iland, Don Voita

• Mirror Mirror on the Ceiling: Flexible Wireless Links for Data
Centers 21
Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,
Ben Y. Zhao and Haitao Zheng

• ImmuNet: Improved Immunization of Children Through
Cellular Network Technology 23
Mariya Zheleva, Ceren Budak, Arghyadip Paul, Biyang Liu, Elizabeth M. Belding,
Amr El Abbadi

Posters

• Breaking the Loop: Leveraging Botnet Feedback for Spam
Mitigation 25
Gianluca Stringhini, Manuel Egele, Christopher Kruegel, Giovanni Vigna

• Enemy of the State: A State-Aware Black-Box Web
Vulnerability Scanner 27
Adam Doupe, Ludovico Cavedon, Christopher Kruegel, Giovanni Vigna

• QuadMat: An Efficient and Extensible Sparse Matrix Structure 29
Adam Lugowski, John R. Gilbert

• Revolver: Detecting Evasion Attacks in Malicious JavaScript
Code 31
Alexandros Kapravelos, Yan Shoshitaisvili, Marco Cova, Christopher Kruegel, Giovanni
Vigna

• Work-in-Progress: Assembly Code Generation for Arbitrary
Rotations 33
Daniel Kudrow, Kenny Bier, Oana Theogarajan, Fred Chong, Diana Franklin

• Do you feel lucky? A large-scale analysis of risk-rewards
trade-offs in cyber security 35
Yan Shoshitaishvili, Adam Doupe, Luca Invernizzi, Giovanni Vigna

• Blacksheep: some dumps are dirtier than others 37
Antonio Bianchi, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

• Directed Social Queries 39
Saiph Savage, Angus Forbes, Rodrigo Savage, Norma Elva Chavez, Tobias Hollerer

• Delay Injection for Service Dependency Detection 41
Ali Zand, Christopher Kruegel, Richard Kemmerer, Giovanni Vigna

Jarhead
Johannes Schlumberger

University of California, Santa Barbara js@cs.ucsb.edu

I. INTRODUCTION

Java applets have increasingly [3], [4] been used as a
vector to deliver drive-by download attacks that bypass the
sandboxing mechanisms of the browser’s Java Virtual Ma-
chine and compromise the user’s environment. State-of-the-
art approaches to the detection of malicious Java applets are
based either on simple signatures or on the use of honeyclients,
which are both easily evaded. Therefore, we propose a novel
approach to the detection of malicious Java applets based on
static code analysis.

Java Applets usually come packaged as archives (called Jar
files). To protect against malicious applets, the JVM sandboxes
an applet and heavily restricts its permissible operations when
it is not loaded from disk.

A sandboxed applet cannot access client resources, such as
the file system. By restricting the abilities of untrusted mobile
code, its abilities to infect an end user’s machine or to tamper
with her data are severely limited.

Malicious applets try to escape the sandbox and install
malware on a victim’s computer. To achieve this, some applets
try to trick careless users into trusting their certificates. Others
target the JVM itself by trying to exploit a vulnerability in
the Java plugin, effectively disabling the sandbox and turning
the applet into a full-fledged, non-restricted program with
permissions equal to that of the user running the browser.

II. JARHEAD SYSTEM OVERVIEW

Jarhead relies on static analysis and machine learning to
detect malicious Java applets. Jarhead analyzes the bytecode
that is part of a class file. To analyze a Jar file, we extract its
contents and then disassemble it.

Jarhead operates in two steps: First, we use a training set
of applets - each applet known to be benign or malicious - to
train a classifier based on the features Jarhead extracts from
applets. After the training phase, we use this classifier in a
second step to perform detection of malicious applets.

Java bytecode was specifically designed to be verifiable
and easy to parse. Static analysis, therefore, works well on
bytecode, and does not suffer from a lot of the limitations
common to other binary program formats, such as computed
jumps. Furthermore, a Java program does not have the ability
to dynamically generate code at runtime, which is usually a
problem for static analysis techniques. Thus, even when attack-
ers make use of code obfuscation [5], a static analysis approach
(such as the one proposed in this paper) can obtain sufficient
information to correctly classify an unknown program (as our
results demonstrate).

III. FEATURE DISCUSSION

Jarhead collects a total of 42 features: Six are numeric, ten
are integers, and the remaining 26 are Boolean values. These
features can be divided into two categories. The obfuscation
features and the features aiming at exposing the purpose of
an applet by statically examining its potential behavior - the
behavioral features.

a) Obfuscation Features: Obfuscation is an important
aspect for all malware today. Obfuscated code differs from
other code because it is generated by obfuscation kits in an
automated way. These kits chop up string constants and intro-
duce additional statements or declarations without changing
the semantics of the original code. We use different code
metrics as features to find differences between obfuscated and
non-obfuscated code such as dead code, obfuscated Strings or
the use of reflection. We also check if there is functionality
to load code at runtime or execute a scripting language. Of
course, obfuscation alone is not sufficient to identify a Java
program as malicious, since obfuscation kits are also used by
benign code. However, while manually examining many Java
applets collected from the Internet, we found that obfuscation
is overwhelmingly used by malicious applets.

b) Behavioral Features: The overwhelming majority of
applet malware has a specific purpose: Escaping the Java
sandbox to infect the end user’s machine and make it a
member of a botnet. The features in this section aim at
statically identifying this behavior. We check for interactions
with the runtime environment and the Java security system.
Furthermore Jarhead determines if a Jar has the potential to
download files or launch programs.

By detecting all known possible ways for an applet to spawn
a new process, we make it impossible for malicious applets
to achieve this without triggering the corresponding detection
feature.

Benign applets are usually written with the goal of display-
ing something to the visitor of a web page or to play audio.
Typically, the files necessary to do so (media files, images, . . .)
are included in the Jar archive. If an attacker tries to mimic a
benign applet, this will raise his costs per attack.

Finally we also compiled a set of five well known vulnerable
components of the Java library. Exploits that target well-
known, vulnerable Java library functions have to call these
functions to be successful. Of course, these functions also
serve a legitimate purpose. However, we found that they are
rarely used by benign applets (and our other features help
in making this distinction). Their rare usage probably also
indicates that they were not well-tested in the first place and
thus the vulnerabilities were overlooked. If more vulnerable

1

functions were to be added to this set later on, we would
expect them again to be somewhat obscure and rarely used by
benign applets. These few functions provide a way to break
out of the sandbox without user interaction in vulnerable Java
versions.

Abstaining from the use of these functions significantly
decreases the chances of success for an attacker, since passive
infection without user interaction becomes impossible.

If an attacker tries to evade the obfuscation features, he will
more likely be caught by traditional signature-based detection
systems.

Even if an attacker finds a way to evade the obfuscation
features, in order to achieve his purpose of infecting end
users, his malware will necessarily implement functionality to
achieve this goal (break out of the sandbox and start malware
on the victim’s PC). By capturing this behavior, intrinsic to
the attacker’s goal, we make it difficult for malicious code to
evade our analysis and still succeed.

IV. EVALUATION

We evaluated our system to measure how well it performs
in detecting malicious applets. For our experiments, we used
two different datasets: A manually-compiled dataset of applets
(the manual set), and a set of samples collected and provided
to us by the authors of the Wepawet system [2] (the Wepawet
set).

a) Results: Manual Dataset: The manual dataset con-
tains samples from four different sources: Two online collec-
tion of applets (that offer a selection of Java applets for web
designers to use in their web pages), an archive of mostly-
malicious applets, and a number of manually collected samples
for a total of 2,095 samples.

To obtain ground truth for building and evaluating our C4.5
decision tree classifier, we submitted the entire manual dataset
to Virustotal [1]. Virustotal found 1,721 (82.1%) of the files
to be benign and 374 (17.9%) to be malicious (we counted a
sample as benign if none of the Virustotal scanners found it
to be malicious and as malicious if at least one scanner found
it to be malicious).

Using the results from Virustotal as a starting point, we built
an initial classifier and applied it to the manual dataset. We
then manually inspected all samples for which the results from
our classifier and the results from Virustotal were different. In
this process, we found that Virustotal has actually misclassified
61 (2.9%) applets. We manually corrected the classification of
these 61 applets, and used the resulting, corrected classification
as the ground truth for our dataset (with 381 malicious and
1,714 benign samples).

With ten-fold cross validation, our classifier only misclas-
sified a total of 11 (0.5%) samples.

If we compare our detection results to the results produced
by Virustotal, we see a reduction in the number of misclassi-
fications by a factor of six (in spite of the fact that we used
Virustotal to build our initial labels and hence, our ground
truth might be biased in favor of Virustotal). Despite a few
misclassified instances, we found that our system performs
detection with high accuracy. In particular, some of the incor-
rect cases are arguably in a grey area (such as possibly benign

applets that try to execute commands directly on the Windows
command line and malicious applets that contain incomplete,
half-working exploits).

b) Results: Wepawet Dataset: To further test our clas-
sifier on real-world data, we collected 1,275 Jar file samples
from the Wepawet system.

Virustotal found 413 (32.4%) applets to be benign and 862
(67.6%) applets to be malicious. We then ran our classifier
on this Wepawet set. Compared to Virustotal, we assigned
the same verdict to 1,189 (93.3%) samples, while 86 (6.7%)
samples were classified differently.

Manual examination of the instances with different classifi-
cations revealed interesting results, both for the false positives
and the false negatives. For the false positives, we found that
19 of the 27 were clearly errors in the initial classification by
Virustotal (that is, these 19 applets were actually malicious
but falsely labeled as benign by Virustotal). That is, Jarhead
was correct in labeling these applets as bad. Interestingly, one
of these 19 samples was a malicious applet that was stealing
CPU cycles from the user, visiting a web page to mine bitcoins.
While we had not seen such behavior before, Jarhead correctly
classifies this applet as malicious based on its interaction with
the runtime environment.

We then inspected the 59 applets that Virustotal labeled
as malicious (while Jarhead labeled them as benign). Four
programs were partial exploits that did not implement actual
malicious behavior. Nine were false positives by Virustotal.
We do not consider these partial exploits (which are essentially
incompletely packed archives) and the nine benign programs
to be properly labeled by Virustotal.

The remaining 46 samples were actual malware. They were
largely (96%) made up of two families of exploits for which
we had no samples in our (manual) training set, which we
used to build the classifier. To show that we can achieve better
results with a better training set, and to demonstrate that our
features are indeed well-selected and robust, we trained and
tested a new classifier on the Wepawet dataset using ten-
fold cross validation. For that experiment, we found a total
misclassification count of 21 (1.6%).

V. CONCLUSIONS

We address the quickly growing problem of malicious Java
applets by building a detection system based on static analysis
and machine learning. We implemented our approach and
tested it on real-world data. We also deployed our system as a
plugin for the Wepawet system, which is publicly accessible.
Our tool is robust to evasion, and the evaluation has demon-
strated that it operates with high accuracy.

REFERENCES

[1] Virustotal. http://www.virustotal.com.
[2] Wepawet. http://wepawet.iseclab.org.
[3] Mike Geide. 300% increase in malicious jars.

http://research.zscaler.com/2010/05/300-increase-in-malicious-jars.html,
2010.

[4] Brian Krebs. Java: A gift to exploit pack makers.
http://krebsonsecurity.com/2010/10/java-a-gift-to-exploit-pack-makers,
2010.

[5] Cullen Linn and Saumya Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security, CCS ’03, 2003.

2

Message In A Bottle: Sailing Past
Censorship

Luca Invernizzi1, Christopher Kruegel1, Giovanni Vigna1

1 UC Santa Barbara

Abstract—Exploiting recent advances in monitoring
technology and the drop of its costs, authoritarian
and oppressive regimes are tightening the grip around
the virtual lives of their citizens. Meanwhile, the dis-
sidents, oppressed by these regimes, are organizing
online, cloaking their activity with anti-censorship sys-
tems that typically consist of a network of anonymizing
proxies. The censors have become well aware of this,
and they are systematically finding and blocking all the
entry points to these networks. So far, they have been
quite successful. We believe that, to achieve resilience
to blocking, anti-censorship systems must abandon the
idea of having a limited number of entry points. Instead,
they should establish first contact in an online location
arbitrarily chosen by each of their users. To explore
this idea, we have developed Message In A Bottle, a
protocol where any blog post becomes a potential “drop
point” for hidden messages. We have developed and re-
leased a proof-of-concept application using our system,
and demonstrated its feasibility. To block this system,
censors are left with a needle-in-a-haystack problem:
Unable to identify what bears hidden messages, they
must block everything, effectively disconnecting their
own network from a large part of the Internet. This,
hopefully, is a cost too high to bear.

I. Introduction
The revolutionary wave of protests and demonstrations

known as the Arab Spring rose in December 2010 to shake
the foundations of a number of countries (e.g., Tunisia,
Libya, and Egypt), and showed the Internet’s immense
power to catalyze social awareness through the free ex-
change of ideas. This power is so threatening to repressive
regimes that censorship has become a central point in
their agendas: Regimes have been investing in advanced
censoring technologies, and even resorted to a complete
isolation from the global network in critical moments. To
sneak by the censorship, the dissident populations have
resorted to technology. A report from Harvard’s Center
for Internet & Society [2] shows that the most popular
censorship-avoidance vectors are web proxies, VPNs, and
Tor. These systems share a common characteristic: They
have a limited amount of entry points. Blocking these entry
points, and evading the blocking effort, has become an arms
race: China is enumerating and banning the vast majority
of Tor’s bridges since 2009, while in 2012, Iran took a more
radical approach and started blocking encrypted traffic,
which Tor countered the same day by deploying a new kind
of traffic camouflaging.

In this paper, we take a step back and explore whether it
is possible to design a system that is so pervasive that it is
impossible to block without disconnecting from the global
network. Let’s generalize the problem at hand with the help
of Alice, a dissident who lives on the oppressed country
of Tyria and wants to communicate with Bob, who lives
outside the country. To establish a communication channel
with Bob in any censorship-resistant protocol, Alice must
know something about Bob. In the case of anonymizing
proxies or mix-networks (e.g., Tor), this datum is the
address of one of the entry points into the network. In
protocols that employ steganography to hide messages in
files uploaded to media-hosting sites (such as Collage [1])
or in network traffic (such as Telex [3]), Alice must know
the location of the first rendezvous point.
The fact that Alice has to know something about Bob

inevitably means that the censor can learn that too (as
he might be Alice). Bob cannot avoid this without having
some information to distinguish Alice from the censor (but
this becomes a chicken-and-egg-problem: How did Bob get
to know that?). We believe that this initial something that
Alice has to know is a fundamental weakness of existing
censorship-resistant protocols, which forms a crack in their
resilience to blocking. For example, this is the root cause
of the issues that Tor is facing with distributing bridge
addresses to its users without exposing them to the censor.
It is because of this crack that China has been blocking
the majority of Tor traffic since 2009: the number of entry
points is finite, and a determined attacker can enumerate
them by claiming to be Alice.
In Message In A Bottle (miab), we have designed a

protocol where Alice knows the least possible about Bob.
In fact, we will show that Alice must know Bob’s public key,
and nothing else. Alice must know at least Bob’s public
key to authenticate him and be sure she is not talking to a
disguised censor. However, contrary to systems like Collage
and Telex, there is no rendezvous point between Alice
and Bob. This may now sound like a needle-in-a-haystack
problem: If neither Alice nor Bob know how to contact
the other one, how can they ever meet on the Internet?
In order to make this possible and reasonably fast, miab
exploits one of the mechanisms that search engines employ
to generate real-time results from blog posts and news
articles: blog pings. Through these pings, Bob is covertly
notified that a new message from Alice is available, and

3

where to fetch it from. Just like a search engine, Bob can
monitor the majority of the blogs published on the entire
Internet with limited resources, and in quasi real-time. In
some sense, every blog becomes a possible meeting point
for Alice and Bob. However, there are over 165 million
blogs online, and since a blog can be opened trivially by
anybody, for our practical purposes they constitute an
infinite resource. We have estimated that, to blacklist all
the possible miab’s drop points, the Censor should block 40
million fully qualified domain names, and four million IP
addresses. For comparison, blacklisting a single IP address
would block Collage’s support for Flickr (the only one
implemented), and supporting additional media-hosting
sites requires manual intervention for each one.

II. Design
In its essence, miab is a system devised to allow Alice,

who lives in a country ruled by an oppressive regime, to
communicate confidentially with Bob, who resides outside
the country. Alice does not need to know any information
about Bob except his public key. In particular, miab
should satisfy these properties: Confidentiality, Availability,
Deniability, and Non-intrusive Deployment.

To achieve these properties, the miab protocol imposes
substantial overhead. We do not strive for miab’s per-
formance to be acceptable for low latency (interactive)
communication over the network (such as web surfing).
Instead, we want our users to communicate past the Censor
by sending small messages (e.g., emails, articles, tweets).
The only requirement that Alice must satisfy to use this
protocol is to be able to make a blog post. She can create
this post on any blog hosted (or self-hosted) outside the
Censor’s jurisdiction.

The miab protocol. Our scene opens with Alice, who
lives in a country controlled by the Censor. Alice wants to
communicate with Bob, who is residing outside the country,
without the Censor ever knowing that this communication
took place. To do so, Alice sends a message with the miab
protocol following these steps:
1) Alice authors a blog post of arbitrary content. The

content should be selected to be as innocuous as
possible.

2) Alice snaps one or more photos to include in the post.
3) Alice uses the miab client software to embed a message

M into the photos. The message is hidden using a

public-key steganography scheme, using Bob’s public
key.

4) Alice publishes the blog post, containing the processed
photos. Alice can choose the blog arbitrarily, provided
it supports blog pings.

5) The blog emits a ping to some ping servers.
6) Meanwhile, Bob is monitoring some of the ping servers,

looking for steganographic content encrypted with his
public key. Within minutes, he discovers Alice’s post,
and decrypts the message.

7) Bob reads the message, and acts upon its content
(more on this later).

We envision that miab might be used to bootstrap more
efficient anonymity protocols that require Alice and Bob to
know each other a little better (such as Collage, or Telex),
but this is outside the scope of this extended abstract.

III. Implementation
To demonstrate the feasibility of miab, we have imple-

mented a proof-of-concept application that can be used
to post anonymous messages on Twitter, circumventing
the block on social networks imposed by Tyria’s Censor.
To provide a more open evaluation, we have published
the code online: The application can be downloaded
at http://www.message-in-a-bottle.us, together with our
public key. We have set up a small cluster of machines
that monitors one of the most popular blog ping servers
(webblogs.com), looking for miab messages (our cluster
plays Bob’s part in the algorithm). When a message is
found, its content is posted on Twitter under the handle
@corked_bottle. miab relies on Bob’s ability to fetch and
process all the blog posts created on the Internet in real
time. To prove that this is feasible, we have done so with
our cluster. Over the period of three months (72 days), we
have seen 814, 667, 299 blog posts. The average number of
posts seen per day is 11, 314, 823, and the highest traffic
we have experienced is 13, 083, 878 posts in a day.

References
[1] S. Burnett, N. Feamster, and S. Vempala. Chipping away at

censorship firewalls with user-generated content. In USENIX
Security Symposium, 2010.

[2] J. Palfrey, H. Roberts, J. York, R. Faris, and E. Zuckerman. 2010
circumvention tool usage report. 2011.

[3] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex:
Anticensorship in the network infrastructure. In USENIX Security
Symposium, 2011.

4

Shellzer: a tool for the dynamic analysis of
malicious shellcode

Yanick Fratantonio
Computer Security Lab, UCSB

yanick@cs.ucsb.edu

Christopher Kruegel
Computer Security Lab, UCSB

chris@cs.ucsb.edu

Giovanni Vigna
Computer Security Lab, UCSB

vigna@cs.ucsb.edu

Abstract—Shellcode is malicious binary code whose execution
is triggered after the exploitation of a vulnerability. The au-
tomated analysis of malicious shellcode is a challenging task,
since encryption and evasion techniques are often used. This
paper introduces Shellzer, a novel dynamic shellcode analyzer
that generates a complete list of the API functions called by
the shellcode, and, in addition, returns the binaries retrieved at
run-time by the shellcode. The tool is able to modify on-the-fly
the arguments and the return values of certain API functions in
order to simulate specific execution contexts and the availability
of the external resources needed by the shellcode. This tool has
been tested with over 24,000 real-world samples, extracted from
both web-based drive-by-download attacks and malicious PDF
documents. The results of the analysis show that Shellzer is able
to successfully analyze 98% of the shellcode samples.

I. INTRODUCTION

Malware, which is a generic term used to denote software
that aims to compromise a computer, is the leading threat on
the Internet. One of the primary methods used by the attackers
to deliver malware is code injection. In the case of web-
based malware, the user is lured into visiting a malicious web-
page. The JavaScript contained in that page tries to exploit
a vulnerability in the browser. If it succeeds, the exploit
triggers the execution of an arbitrary piece of code, often called
shellcode. A shellcode is a small piece of code, whose goal is
to compromise the machine that executes it. In this paper, we
introduce Shellzer, a tool for the dynamic analysis of malicious
shellcode. In particular, we focus our attention on shellcode
extracted from web-based malware and from malicious PDF
documents. Given a shellcode in input, Shellzer analyzes it
by instrumenting each instruction in the code, to have the
complete control over the shellcode’s execution. Two different
optimizations have also been introduced in order to make this
approach feasible in terms of performance. Furthermore, in
order to fulfill some specific conditions required for a correct
analysis, the tool dynamically alters both the arguments and
the return value of some API functions. By doing this, the
tool is capable of observing the behavior of the shellcode
during a real-attack scenario. As output, the tool returns a
report that contains the following information: a complete trace
of the API calls (with their most significant arguments and
their return values), the URLs from which external resources
have been retrieved, and the evasion techniques used by the
shellcode. Furthermore, the tool returns the additional binaries
that are retrieved at run-time, even if the binary was originally

encrypted (note how just having the encrypted binary would
be useless, since the decryption routine is implemented in
the shellcode, and not in the binary itself). This feature is
useful also when dealing with shellcode samples extracted
from malicious PDF documents, where the additional payload
is contained in the PDF document itself, usually encrypted.

II. OVERVIEW OF THE SYSTEM

Shellzer dynamically analyzes shellcode samples by instru-
menting their execution at a single-instruction level gran-
ularity. The instrumentation is performed by using Py-
Dbg [1], a Python Win32 debugging abstraction class. In
particular, the core of the analysis is performed in the
EXCEPTION_SINGLE_STEP’s handler that it is called be-
tween the execution of each assembly instruction. Our goal
was to have complete control over the shellcode’s execution,
as if we were using an approach based on emulation. The
advantage in using such a technique is that we can dynamically
decide if it is necessary to single-step through the code or not,
so that the overhead caused by the instrumentation is intro-
duced only when it is strictly required. We will now discuss the
three main components of our system, the motivations behind
our design decisions and the challenges that each component
is addressing.

API calls detection and tracing. We now describe how
Shellzer detects and traces the API functions called by the
shellcode. Before the execution of each assembly instruction
we retrieve the program counter (PC), and we then determine
where the PC is pointing to. By checking if the PC is pointing
to a memory region where a specific Windows API function is
located, we are able to detect that an API is called, and which
one it is. Moreover, by retrieving the stack pointer (SP), we
are also able to determine the values of the API’s arguments,
that have to be placed on top of the stack just before the API is
called. By using a similar technique, we also retrieve the API’s
return value. Note that since we have the complete control over
the shellcode’s execution, this technique is powerful enough to
detect and properly handle a number of assembly-level evasion
techniques that real-world shellcode we found in our dataset
often use.

Dynamic interaction. By using an approach based on
single-step instrumentation, we are able to inject custom
pieces of code at any moment between the execution of each
assembly instruction, and, therefore, the tool has the ability

5

Listing 1. calc_exit_points()
def c a l c e x i t p o i n t s (loop body , known loops) :

e x i t p o i n t s = s e t ()
c a n d i d a t e s = s e t ()
f o r a d d r e s s in loop body :

i f a d d r e s s in known loops . keys () :
c a n d i d a t e s . add (known loops [a d d r e s s])
c o n t in u e

i n s = d i s a s s e m b l e (a d d r e s s)
i f i n s in b r a n c h e s :

t aken , n o t t a k e n = g e t d e s t a d d r s (i n s)
c a n d i d a t e s . add (t a k e n)
i f n o t t a k e n not None :

c a n d i d a t e s . add (n o t t a k e n)
f o r c a n d i d a t e in c a n d i d a t e s :

i f c a n d i d a t e not in loop body :
e x i t p o i n t s . add (c a n d i d a t e)

known loops [loop body [0]] = e x i t p o i n t s
re turn e x i t p o i n t s

to dynamically read and write the process memory, access
and modify the CPU registers’ values, and so on. Our tool
exploits this capability to address two of the big challenges
we found in analyzing shellcode samples. The first issue
comes from the fact that the shellcode might try to retrieve
additional resources (usually additional malware) and, if they
are not available, the shellcode’s execution might crash. This
outcome is not desirable since our goal is to analyze the
behavior of the shellcode as if it were executed during a
real-world attack. Therefore, if the shellcode fails to retrieve
these external resources, we dynamically simulate that those
resources are available, by properly altering the return values
of some specific Windows API functions. The second issue
we addressed is related to the fact that some shellcode need
to be executed in a very specific execution context. In order
to solve this problem, we simulate that the whole analysis is
performed within the required execution context. Also in this
case, this is obtained by modifying on-the-fly the content of
some specific memory regions and the return values of specific
Windows API functions.

Performance speed-up. Instrumenting the whole shell-
code’s execution with a single-instruction granularity gives
us the complete control over the shellcode’s execution, but
bears a significant performance overhead. For this reason, we
implemented two optimizations that allow for the disabling
of the single-step mode when it is not necessary. The first
aims to disable the single-step mode during the execution
of API functions, whose semantic is already known. From
the technical point of view, this is achieved by performing
the following steps: once we detect that an API is about to
be called, we determine the return address (the address in
memory where the execution will return to after the API’s
execution), we set a software breakpoint on it, and we continue
the execution of the API with the single-step mode disabled.
When the execution will return from the API’s code, the
breakpoint will be triggered and, after having restored the
single-step mode, we continue with the normal analysis. The
second optimization is related to the following observation:

despite the fact that shellcode is usually few hundreds of bytes
long, the number of instructions that are actually executed at
run-time is in the order of millions due to the presence of
many loops. What we noticed is that once the loop’s body has
been analyzed the first time, the single-step instrumentation is
often no longer needed for the other iterations. To handle this
we designed an algorithm to temporarily disable the single-
step mode during the execution of loops. We now discuss
our algorithm. After detecting that the execution is in loop
(to do that, the tool keeps track of the instructions that have
been previously executed), we analyze the loop’s body (that is
the list of instructions that constitute the loop itself) and we
determine which are the exit points (i.e., the set of addresses
such that at least one of them has to be reached once the loop’s
execution is terminated). To properly handle nested loops,
we needed to store the information related to the previously
determined loops. The complete algorithm is presented in
Listing 1. Once the set of exit points is determined, we set an
hardware breakpoint on each of them and, after disabling the
single-step mode, the execution is resumed. When the loop’s
execution terminates, one of the breakpoints will eventually
be triggered and we will have a chance to resume the single-
step mode. The impact of this optimization is tremendous: in
fact, just few hundreds of instructions have to be single-step
executed, while the number of instructions actually executed
is in the order of millions, and the analysis consequently takes
few seconds instead of several minutes.

III. EVALUATION

We evaluated Shellzer by analyzing 24,214 real-world
shellcode samples, previously detected and extracted by
Wepawet [2], an online service for detecting and analyzing
web-based malware, malicious PDF documents and others.
Shellzer has been able to analyze most of them, and the
analysis didn’t finish for our tool’s limitations only in the
∼ 2% of the cases.

IV. CONCLUSION

In this paper, we have presented Shellzer, a tool for the
dynamic analysis of shellcode samples. Thanks to a series
of optimizations, the single-step instrumentation turned out
to be a successful approach. Starting from November 2011,
Shellzer is used by Wepawet to process the shellcode samples
detected during its analysis. Over 148,000 samples have been
successfully analyzed since then, and useful insights into real-
world malware have been provided to security researchers
from around the world.

REFERENCES

[1] P. Amini, Pydbg, http://pedram.redhive.com/PyDbg/
[2] M. Cova, Wepawet, http://wepawet.cs.ucsb.edu

6

User-Perspective Augmented Reality Magic Lens
Domagoj Baričević, Cha Lee, Matthew Turk, Tobias Höllerer

Four Eyes Lab

University of California, Santa Barbara

{domagoj, chalee21, mturk, holl}@cs.ucsb.edu

(a) (b) (c)

Figure 1: Prototype of a user-perspective AR magic lens. (a) shows the hardware used: Kinect, Wiimote, and display. The Kinect sensor is mounted behind the
tablet facing out and the Wiimote is mounted above the display facing the user. (b) shows a device-perspective magic lens. The image on the magic lens is from the
perspective of the Kinect sensor. (c) shows the user-perspective magic lens. The image on the magic lens is from the perspective of the user (the small misalignment
is due to imperfect calibration).

1 INTRODUCTION

One of the most common interface types in Augmented Re-
ality (AR) is the metaphor of the hand-held magic lens [1].
In this type of interface a mobile device such as a phone or
tablet is used as a window that can reveal virtual content
aligned with the real world. Concept images of AR magic
lenses show that the magic lens displays a scene from the
user’s perspective, as if the display were a smart transparent
frame allowing for perspective-correct overlays. This is ar-
guably the most intuitive view. However, current AR magic
lens implementations rely on video-see-through methods and
show the augmented scene from the point of view of the cam-
era on the hand-held device. The perspective of that camera
is very different from the perspective of the user (compare
Figure 1b to Figure 1c), so what the user sees does not align
with the real world. A true magic lens would show the scene
from the point of view of the user, not the device. The tech-
nology needed to make this possible has only recently be-
come available. In this paper we present the first proof-of-
concept prototype of a hand-held AR magic lens with user-
perspective rendering.

2 IMPLEMENTATION

We developed a prototype implementation of a tablet-sized
user-perspective AR magic lens. The prototype has many
limitations compared to an ideal AR magic lens, but it serves
as a fully functional proof of concept. It was built using off-
the-shelf hardware and open source software.

There are three challenges in presenting user-perspective
imagery: (1) tracking the user’s head position accurately, (2)
tracking the pose of the display with respect to the world

accurately, and (3) obtaining/creating a model of the world.
Generating user-perspective images requires all three pieces
of information since we must render the world from an ar-
bitrary observer viewpoint different from the device’s view-
point.

2.1 Hardware
The prototype was built using three off-the-shelf devices and
a desktop workstation. The Kinect sensor is the central com-
ponent of the prototype and was mounted behind the hand-
held display, as seen in Figure 1. The display has a Lilliput
10.4” TFT LCD screen with a native resolution of 800x600
pixels. Attached to the top of the display is a Wiimote which
is used to track the user’s head position. The user wears a
pair of goggles with four infra-red LED markers attached.
The Wiimote communicates with the workstation via Blue-
tooth while both the Kinect and the display are tethered to the
workstation. The workstation runs Kubuntu and has 32GB
of RAM, two dual-core AMD Opteron 2.60GHz CPUs, and
two NVIDIA GPUs: Quadro FX 5600 and Quadro 6000.

2.2 Software
In order to provide a user-perspective view of the augmented
scene, three requirements need to be met: a means of track-
ing the user, a way to reconstruct the real-world scene, and a
way to track the display with respect to the scene. Our sys-
tem uses two separate software components to perform these
tasks. The main component performs the reconstruction of
the scene and tracks the display at the same time. It also
handles the rendering of the user-perspective image of the
AR scene. A separate standalone component performs the
user tracking using the Wiimote and four LED markers on a

7

pair of goggles worn by the user. Communication between
the two is achieved by using a UDP network connection over
a loop back interface; this makes the overall system more
modular, with easy support for alternate tracking solutions.

The main software component deals primarily with the
display and the Kinect sensor. It generates and uses two
models of the real world scene. The first is the live feed
from the Kinect sensor that is represented as a point cloud.
The second is a reconstructed model of the real world using a
modified version of KinFu, the Point Cloud Library’s imple-
mentation of the Kinect Fusion algorithm [2]. Our modifica-
tions were to the ray-caster which renders the reconstructed
model, adding support for rendering the reconstructed vol-
ume both in color and from arbitrary viewpoints. KinFu is
also used to track the pose of the Kinect relative to the real-
world scene. The algorithm automatically computes the pose
of the Kinect relative to KinFu’s internal coordinate system
and this is used when positioning augmentations that are de-
fined in terms of a real-world coordinate system. This re-
quires an initialization step where the magic lens is aimed at
a marker defining the coordinate system and the pose of the
Kinect is computed relative to this marker.

The final AR scene is composed by blending three graph-
ical layers. The base layer is the colored rendering from the
modified KinFu raycaster. The mid layer is a reprojection of
the point cloud from the live depth feed. The final layer has
the augmentations to the scene, rendered with proper occlu-
sion with the real world. Proper occlusion is accomplished
by writing the depth map from KinFu into the top layer’s
depth buffer before the augmentations are rendered.

2.3 Performance

The prototype has two major constraints inherited from the
Kinect sensor: it can only detect depth in the range of ap-
proximately 0.5 to 4 meters, and cannot be used in spaces
with strong IR illumination such as outdoor environments.
The depth range constraint effectively prevents any practical
application requiring users to manipulate objects with one
hand, while holding the tablet in the other. However this is a
current limitation of the technology and could be removed in
the future as the technology improves and more depth cam-
eras can be used to cover a wider depth range and space.

The KinFu algorithm also imposes additional constraints.
It automatically defines a portion of the space that it will
reconstruct and anything outside this space will not be re-
constructed and the depth data will be ignored. Although
the size of the volume is arbitrary, it is always modeled as
a 512x512x512 voxel space. This results in a trade-off be-
tween the size of the volume that can be reconstructed and
the level of detail. The colored rendering of the voxel space
in particular has a rather voxelated appearance, due to the
large amounts of pixel data that are lost when building the
3D color model. The coarseness of the reconstruction also
results in small errors with the occlusions between real and
virtual objects, particularly along the edges of the objects.

These drawbacks are partially compensated by also using the
point cloud from the live feed. This point cloud is not con-
strained to a given area of the real world and offers much
better color representation as it uses all the current color data
from the Kinect sensor. The downside of the point cloud
is that it only uses the currently available depth data which
generally has gaps and is constrained to what the Kinect sees,
not what the user sees.

Combining both the reconstruction from KinFu and the
live point cloud from the Kinect sensor results in a represen-
tation of the real-world space that is of greater quality that ei-
ther can offer alone. Unfortunately, the KinFu algorithm will
sometimes wrongly estimate the pose of the Kinect, causing
a misalignment between the two models. Also, if the pose
estimation fails completely, the algorithm will reset the re-
construction and it will need to be reinitialized.

3 CONCLUSION

We have implemented a user-perspective AR magic lens, and
to our knowledge this is the first one of its kind. Our proto-
type was implemented using current hardware and software
with minor modifications. As seen in Figure 1, it still pro-
duced visibly acceptable results. Unlike the common AR
magic lens of the device-perspective type, the prototype must
reconstruct the world in real-time and render it from a differ-
ent view. The depth range, limited image quality, and track-
ing robustness does not allow for any truly practical applica-
tions yet with this device. But this prototype does show that
it may soon be possible. Better and more numerous depth
sensors will reduce the depth range issue while increasing the
resolution of the 3D model. We can also expect that hand-
held devices will soon have the processing power needed
to make an untethered version of this prototype possible.
Overall, given the complexity of capturing and re-rendering
user-perspective arbitrary scenes in real-time, the results we
achieved with off-the-shelf hardware and software are very
encouraging.

Other methods could be used to create a user-perspective
magic lens. One approach would be to use a transparent
screen for optical-see-through AR; this would introduce is-
sues such as binocular rivalry and visual interference as
users try to align virtual objects rendered on a transparent
layer against objects in the background. However, adding a
parallax barrier for an autostereo transparent display would
greatly reduce this issue. In fact, this would be a promising
solution as no reconstruction would be necessary so there
would be no visual artifacts or errors with the real world con-
tent.

REFERENCES
[1] E. Costanza, A. Kunz, and M. Fjeld. Mixed reality: A survey. In Human Machine

Interaction, volume 5440 of Lecture Notes in Computer Science, pages 47–68.
Springer Berlin / Heidelberg, 2009.

[2] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. KinectFusion: real-time
3D reconstruction and interaction using a moving depth camera. In Proceedings
of the 24th annual ACM symposium on User interface software and technology,
UIST ’11, pages 559–568, New York, NY, USA, 2011. ACM.

8

Sketch Recognition (Practically) Anywhere with
SPARK

Jeffrey Browne and Timothy Sherwood
University of California, Santa Barbara
{jbrowne, sherwood}@cs.ucsb.edu

Abstract—The sketch community has, over the past years,
developed a powerful arsenal of recognition capabilities and
interaction methods. Unfortunately, many people who could
benefit from these systems lack pen capture hardware and can
only draw diagrams on traditional surfaces like paper.

In this work we explore bringing the benefits of sketch capture
and recognition to traditional surfaces through a common smart-
phone with SPARK, a framework for building mobile, image-
based sketch recognition applications. As evidence of our
techniques, we have implemented a mobile app in SPARK that
captures images of Turing machine diagrams drawn on paper, a
whiteboard, or even a chalkboard, and allows users to simulate
recognized Turing machines on their phones.

I. INTRODUCTION

Sketch recognition applications have, over the past several
years, managed to bring the power of sophisticated design
applications within reach of novices by leveraging users’ pre-
vious freehand drawing skills. However, the hardware required
to capture these drawn strokes remains niche, and the reality
is that most design sketching today still happens on traditional
whiteboards, paper, and even chalkboards.

In order to enable sketch recognition for everyday users,
we have implemented the Sketch Practically Anywhere Recog-
nition Kit (SPARK), a mobile, image-based framework for
developing sketch recognition apps on ubiquitous smartphone
hardware, and as a proof of concept of the framework,
we have developed a Turing machine simulator within the
framework (figure 1). The result is a full system that allows
users to capture images of Turing machine diagrams drawn
on paper, whiteboards, or even chalkboards, and to simulate
them step-by-step on a mobile device.

Static image data contains no temporal information to
determine how and when strokes are drawn, but through
novel modifications to known image processing techniques,
our framework can reliably capture hand-drawn marks and
convert them to a form more readily handled by many sketch
processing systems—“strokes” consisting of a totally-ordered
path of X,Y coordinate pairs.

II. USER EXPERIENCE

To interact with our system, an end user first draws a Turing
machine on a whiteboard. When she wishes to analyze her
work, she photographs the relevant diagram, and a picture is
sent to a recognition server.

In a matter of seconds, the server returns the recognized
Turing machine recognized from the photo, which is displayed

Fig. 1: Apps within SPARK (like this Turing machine sim-
ulator) use sketch recognition techniques on strokes extracted
from photos of whiteboards, paper, and chalkboards.

in “Simulation” mode on the device (figure 1), and the user can
begin stepping through the operation of the Turing machine
straight away. The I/O tape displayed below the diagram
updates upon each press of the step button, with the states
gaining or losing highlight depending on their active status.
Through a menu system, she can define a different tape string
to be placed on the tape for simulation, or save the recognized
Turing machine for later examination.

III. RECOGNIZING STROKES FROM AN IMAGE

SPARK’s architecture is such that, after a user takes a pho-
tograph of her diagram, the stroke extraction and recognition
occurs on a remote server, a process that can be broken down
into three distinct modules:

A. Image Normalization

Since we aim to recognize marks on various surface types,
the first step in image normalization determines if the diagram
is drawn on a whiteboard/paper, or a blackboard. Our system
exploits the tail of an image’s value histogram, where values
correspond to the ink, rather than the median pixel value,
which corresponds to the color of the background surface,

9

since neither board type is distinctly black or white, but rather
more of a gray. If there are more pixels significantly lighter
than the median than pixels that are darker, we assume the ink
is light (e.g. chalk on a blackboard), and we invert the image,
so our algorithms can proceed assuming dark ink.

Further, when a user takes a photograph of her diagram,
shadows, reflections, and smudges from unclean boards re-
sult in an image where static threshold values for ink and
background separation will not suffice. To separate foreground
marks from the background surface, our algorithm performs a
modification of Niblack’s adaptive thresholding[?]; we gener-
ate a signature image of the image background to subtract out
of the original image, which is then binarized according to a
static threshold.

B. Stroke Extraction

it is represented as regions of solid black against a white
background, with potentially dozens of pixels corresponding
to each “point” in the logical stroke that they represent.

After image normalization, the marks can be separated
from the board, but the bitmap regions representing ink must
be further transformed into a logical path of points. First,
to determine the (unordered) set of points corresponding to
each symbol, we utilize established thinning techniques[?],
modified to take into account the local stroke thickness at
each point to compensate for errors that result from the limited
context inherent in the 3x3 sliding window-based algorithm.
For example, a “spurious edge” error occurs when a pixel
mistakenly forms what looks like a legitimate endpoint early
in the thinning process, resulting in a hair-like protrusion from
the logical center-line of a stroke.

To trim these edges, our graph building algorithm first
selects intersection points between simple edges as part of
the graph of stroke points, finding the original ink’s thickness
around that point. It then iteratively merges the closest point
that falls outside the graph’s total thickness region until all
thinned points either in the graph or covered by another point.
Spurious edges fall entirely into the thickness region of another
point and are omitted from the final point graph.

Since thinning erodes regions to a medial axis, regions
where strokes cross can be split into multiple distinct in-
tersections in the final graph. To address this shortcoming,
our modified algorithm examines a circular region with a
radius of the stroke’s thickness around every intersection in the
adjacency graph, where the thinning results are reexamined.
If multiple intersections overlap according to their thickness
regions, then the algorithm creates a point with their average
coordinates to use as a single replacement point.

Once the points of each mark are found, our algorithm then
imposes an ordering on them, effectively “tracing” one or more
strokes per thinned ink region by traversing the point graph
starting at an endpoint (or arbitrary point if no endpoint exists).
If, during traversal, our algorithm encounters an intersection
of multiple line segments, the path is extended preferring the
overall smoother path. Tracing is complete when all points

in the graph are part of a stroke, at which point the entire
collection of strokes is passed to the recognition phase.

C. Recognition over Extracted Strokes

Recognition for apps within SPARK begins when, one at a
time, the strokes are submitted to a hierarchical recognition
module. Individual letters are recognized using a feature-
based linear classifier, which, as with heuristic logic for
recognizing closed shapes, and arrows, analyzes raw stroke
data. When one of these “low-level observers” recognizes its
target pattern, it builds a semantic description of the symbol
in the form of an annotation that is then tagged onto the
associated set of strokes. While lower-level recognizers
examine stroke data directly, text string-, directed graphs-,
and Turing machine recognizers are implemented as “higher-
level observers” that respond only to the addition of semantic
annotations, and as such they mostly analyze the structure
among recognized symbols. Specifically, text strings are recog-
nized from individual letters, assuming they are of a similar
scale and proximity and share a common baseline, whereas
directed graphs are collected from closed shapes and arrows
annotations depending on arrow direction and proximity to
nodes. Finally, each Turing machine is built from text strings
with length three as labels and directed graphs as the machine’s
logic.

After all of the strokes extracted from the image along
with their annotations have propagated through the recognition
process, semantic meaning of the diagram is sent in XML
format to the mobile phone. From here, a user can interact with
her diagram using a mobile interface as already discussed.

IV. DISCUSSION

An important consideration for any sketch recognition
application is the rectification of inevitable (but hopefully
infrequent) errors. Sketch is inherently ambiguous as an input
mode, and without user guidance, some drawings would be
recognized incorrectly, even by human observers. Currently,
the only means for correction are modifying the original
drawing and re-capturing an image, but we foresee a mode
where users will select strokes using touch, on which they
will impose the desired interpretation manually.

REFERENCES

[1] W. Niblack, An introduction to digital image processing. Prentice-Hall
International, 1986.

[2] N. J. Naccache and R. Shinghal, “An investigation into the skeletonization
approach of hilditch,” Pattern Recognition, vol. 17, no. 3, pp. 279–284,
Jan. 1984.

10

Catch Me If You Can: Pursuit and Capture in
Polygonal Environments with Obstacles

Kyle Klein and Subhash Suri

Department of Computer Science
University of California

Santa Barbara, CA 93106
{kyleklein, suri}@cs.ucsb.edu

Abstract—We resolve a several-years old open question in
visibility-based pursuit evasion: how many pursuers are needed
to capture an evader in an arbitrary polygonal environment with
obstacles? The evader is assumed to be adversarial, moves with
the same maximum speed as pursuers, and is “sensed” by a
pursuer only when it lies in line-of-sight of that pursuer. The
players move in discrete time steps, and the capture occurs when
a pursuer reaches the position of the evader on its move. Our
main result is that O(

√
h + logn) pursuers can always win the

game with a deterministic search strategy in any polygon with
n vertices and h polygonal obstacles (holes). In order to achieve
this bound, however, we argue that the environment must satisfy
a minimum feature size property, which essentially requires the
minimum distance between any two vertices to be of the same
order as the speed of the players. Without the minimum feature
size assumption, we show that Ω(

√
n) pursuers are needed in

the worst-case even for simply-connected (hole-free) polygons of
n vertices!

I. INTRODUCTION

Pursuit evasion games arise in applications ranging from
military strategy to trajectory tracking, search-and-rescue,
monitoring, surveillance and so on [1]. The general problem
addressed in this paper relates to pursuit evasion in continuous
space under a visibility-based model of sensing. In particular,
we have an environment modeled as a polygon P , possibly
containing obstacles. We use h to denote the number of
obstacles, a mnemonic for “holes” in the polygon, and n
to denote the total number of vertices in the environment,
including the obstacles. A team of pursuers {p1, p2, . . . , pk}
is tasked to locate and catch a mobile evader e, and the
fundamental question we seek to answer is this: how many
pursuers are always sufficient to catch the evader, no matter
what strategy it follows? Specifically, as a function of n and
h, what is the smallest number k of pursuers that guarantees a
win for the pursuers in any polygon of n vertices and h holes.

The most relevant work to our research is the paper by
Guibas et al. [2], which introduced a formal framework and
analysis of visibility-based pursuit in complex polygonal en-
vironments. In order to make the problem tractable, however,
Guibas et al. make one crucial simplifying assumption: the
evader loses if it is “seen” by any pursuer. That is, the
pursuers need to only detect the presence of the evader,
and not physically catch it. With this weaker requirement of
“capture,” Guibas et al. manage to prove several interesting
combinatorial bounds, including that Θ(log n) pursuers in a
simply-connected polygon, and Θ(

√
h + log n) pursuers in a

polygon with h holes (obstacles), are always sufficient and

sometimes necessary. In fact, these bounds hold even if the
evader can move arbitrarily faster than the pursuers.

In the intervening twelve or so years, there has been little
progress on extending these “detection” of evader bounds to
physical “capture” of the evader. In fact, there are only a
handful of small results to speak of. First, Isler et al. [3]
show that in simply-connected polygons, two pursuers can
capture the evader in expected polynomial time using a ran-
domized strategy. Recently, and almost simultaneously, two
groups, [4] and [5], proved that if the location of the evader
is always known to the pursuers, e.g., using an ubiquitous
camera network, then 3 pursuers are enough to win the game.
Without these extreme conditions of unfair advantage to the
pursuers, no non-trivial upper bound on the number of pursuers
necessary to win the game is known. The main result of this
paper is to resolve this question.

Our first result is a general lower bound of Ω(
√
n) for

the number of pursuers needed in the worst-case to catch an
equally fast evader in simply-connected (hole-free) polygons
of n vertices. Next we show that if the environment satisfies a
minimum feature size property, then O(

√
h + log n) pursuers

are always sufficient to catch the evader in a polygon with n
vertices and h obstacles (holes). When the polygon is simply-
connected (hole-free), this yields an O(log n) bound for the
number of pursuers. Due to space constraints we omitt formal
proofs, however, we sketch the general ideas where possible.

II. PROBLEM FORMULATION

The pursuers {p1, p2, . . . , pk} and the evader e take alternate
turns, where all the pursuers can move simultaneously on their
turn. In each turn, a player can move to any position that is
within distance one of its current location, under the shortest
path metric, in the free space (the region of the polygonal
environment not occupied by holes). The players’ sensing
model is based on line-of-sight visibility: a pursuer p sees
the evader e only if the line segment (p, e) does not intersect
the boundary of P . The pursuers are assumed to operate in
a global communication model, allowing them to coordinate
their moves, and share knowledge of the evader’s location.

We assume that all the players know the environment, and
the pursuers do not know the strategies or the future moves of
the evader, although the evader may have complete information
about pursuers’ strategies. The pursuers win if after a finite
amount of time, some pursuer becomes collocated with the
evader. The evader wins if it can evade indefinitely.

11

III. UPPER AND LOWER BOUNDS FOR CAPTURE

Without any restrictions on the environment or the speed
of the players, except that pursuers and evader have the same
maximum speed, we can show the following lower bound.
Theorem 1. There exist simply-connected (hole-free) polygons
with n vertices that require at least Ω(

√
n) pursuers to catch

an equally fast evader.
We now describe a simple geometric condition on the en-

vironment, which we call the minimum feature size condition,
which allows us to circumvent the lower bound of Theorem 1.
The minimum feature size is defined as follows.
Definition 1. Minimum Feature Size: The minimum feature
size of a (multiply-connected) polygon P is the minimum
distance between any two vertices, where the distance is
measured by the shortest path within the polygon.

We will assume that the minimum feature size of the
environment is lower bounded by the maximum speed of
the players: i.e., the environment has minimum feature size
of at least one. We feel that this condition naturally occurs
in physical systems, and its violation is the source of the
Ω(
√
n) lower bound. As a result, a formal proof establishes

the following bound for capture in hole-free polygons.
Theorem 2. Suppose P is a simply-connected polygon of n
vertices satisfying the minimum feature size, then O(log n)
pursuers can always capture the evader.

Next we give a high-level description of the pursuers’
winning strategy in the presence of holes. The search is based
on a divide-and-conquer strategy that recursively partitions the
environment, installing some pursuers to guard the “separating
triangles,” until the search reaches simply-connected regions,
at which point we can invoke Theorem 2. In particular, the
strategy has the following main steps.

Algorithm RecursivePursuit

1) Identify O(
√
h) triangles that partition P into two sub-

polygons, each containing at most 2h/3 holes.
2) Guard each “separating triangle” with a constant number

of pursuers so that the evader cannot move across the
partition without being captured.

3) Recursively search one side of partition, then the other.
4) The recursion stops when the sub-polygon has no holes.

Then, use Theorem 2 to search for, and if present,
capture the evader.

The algorithm begins by triangulating the environment P .
Recall that the graph-theoretic dual of the triangulation is a
planar graph, with a vertex for each triangle and an edge
between two nodes if those triangles have a common boundary
edge. We reduce the size of this graph by contracting each
vertex of degree 2, and deleting every vertex of degree one.
(See Figure 1 for an illustration.) In the end, each surviving
vertex has degree 3, and Euler’s formula for planar graph
implies that G has h faces, at most 2h−2 vertices, and at most
3h − 3 edges. We then use the well-known Planar Separator
Theorem [6] to partition G into two parts, each containing at
most 2/3 the nodes of G, by deleting a set of O(

√
h) nodes.

In the geometric space, this separator corresponds to a set of
O(
√
h) triangles that divide the environment P into two parts,

each containing at most 2h/3 holes. (See Figure 1(d).)

(a) (b)

(c) (d)

Fig. 1. (a) A triangulation; (b) its dual graph; (c) the contracted dual; (d)
illustration of the recursive strategy—two separating triangles (shaded) break
the environment into 3 connected regions, each with at most 1 obstacle.

The remaining difficulty, is to show how to guard each of
the separating triangles with a constant number of pursuers to
prevent the evader from escaping across the partition. While
we omitt a discussion of how this is accomplished, we note
that this is only possible due to the minimum feature size
restriction on the environment.

With those pieces in place, one can show that the number of
pursuers needed is O(

√
h + log n), as follows. The O(log n)

pursuers used in the base case are reused throughout the divide
and conquer strategy, so they form only an additive term. The
remaining demand for the pursuers are those placed at the
separating triangles throughout the divide-and-conquer. Their
count has the following recurrence: T (h) = T (2h/3)+c

√
h,

where c is a constant. This well-known recurrence solves to
T (h) = O(

√
h), easily proved by induction, and so the total

number of pursuers used by the algorithm is O(
√
h + log n),

and we state our main Theorem.
Theorem 3. Let P be a polygonal environment with n vertices
and h disjoint holes satisfying the minimum feature size. Then,
O(
√
h + log n) pursuers can always capture the evader.

IV. CONCLUSION

We have shown that O(
√
h+log n) pursuers can always cap-

ture an equally fast evader in any polygon with n vertices and
h obstacles (holes). This matches the best bound known for
just detecting an evader (a simpler problem) in the visibility-
based pursuit. Further, we show that capturing the evader is
provably harder than detecting, because capturing without the
minimum feature size requires Ω(

√
n) pursuers (in simply-

connected polygons) while detection can be achieved with just
O(log n) pursuers, even against an arbitrarily fast evader [2].

REFERENCES

[1] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Auto. Robots, pp. 1–18, 2011.

[2] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“Visibility-based pursuit-evasion in a polygonal environment,” IJCGA,
vol. 9, no. 5, pp. 471–494, 1999.

[3] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a
polygonal environment,” Robotics, IEEE Transactions on, vol. 21, no. 5,
pp. 875 – 884, 2005.

[4] D. Bhadauria and V. Isler, “Capturing an evader in a polygonal environ-
ment with obstacles,” in Proc. of the Joint Conf. on Artificial Intelligence
(IJCAI), 2011, pp. 2054–2059.

[5] K. Klein and S. Suri, “Complete information pursuit evasion in polygonal
environments,” in Proc. of 25th Conference on Artificial Intelligence
(AAAI), 2011, pp. 1120–1125.

[6] R. J. Lipton and R. E. Tarjan, “Applications of a planar separator
theorem,” oct. 1977, pp. 162 –170.

12

Quantum Algorithms for the Hidden Subgroup
Problem for Semi-Direct Product Groups

Wim van Dam
Departments of Computer Science and Physics,

University of California Santa Barbara,
Santa Barbara, CA 93106, USA

Email: vandam@cs.ucsb.edu

Siladitya Dey
Department of Computer Science,

University of California Santa Barbara,
Santa Barbara, CA 93106, USA

Email: siladitya dey@cs.ucsb.edu

Abstract—The Hidden Subgroup Problem is a framework
that has admitted quantum algorithms to perform exponen-
tially faster than their classical counterparts. However the
problem in the generic case of non-abelian groups presents
no known efficient quantum algorithm. In this article, which
is a work in progress, we introduce a novel approach at
formulating an efficient quantum algorithm in the specific
case of Z/prZ o Z/qsZ groups.

I. INTRODUCTION

The quantum algorithm to factorize integers as given
by Shor [1] is exponentially faster than any known
classical method. This led to increased research in the
area of quantum computing, resulting in more quantum
algorithms which were exponentially faster than their
classical counterparts (discrete logarithm problem [1],
Generalized Simon’s problem [2]). In 1995, Kitaev [3]
showed that the above algorithms and more could be
generalized to the problem of finding subgroup generators
of a group using evaluations of a function that “hides” the
subgroup [8]. This generalized framework is the Hidden
Subgroup Problem (referred hereon as HSP) and has
been successful in admitting quantum algorithms which
are exponentially faster than their classical counterparts.
Moreover, it is known that there exists an efficient solution
to the HSP for generic abelian groups, but not for non-
abelian groups. Motivation for research in this area stems
from the knowledge that an efficient solution to the HSP
over the symmetric group (dihedral group) will result in
an efficient quantum algorithm for graph isomorphism
(shortest vector in a lattice). In this article, we consider a
specific class of non-abelian groups, i.e. the semi-direct
product groups.

II. RELATED WORK

There has been considerable work in trying to solve
the HSP in semi-direct product groups and in this article
we attempt to extend it to the generic case of Z/prZ o
Z/qsZ. Previous work includes reducing the HSP in the
dihedral group to finding cyclic subgroups of order 2,
[4]. Later, it was shown that the HSP in Z/NZo Z/qZ,
for positive integers N, q such that N/q = poly(logN),
reduces to finding cyclic subgroups of order q and this
can be solved efficiently [5]. In 2007, an efficient HSP
algorithm in (Z/prZ)moZ/pZ, with p prime and integers
r,m was found [6] Following this, in 2009 an efficient
quantum algorithm to solve the HSP in Z/pZoZ/qsZ for
distinct odd primes and s > 0 such that p/q = poly(log p)

was shown [7].

III. THE SEMI-DIRECT PRODUCT GROUP

G := Z/prZ o Z/qsZ

In this section, we describe the properties of the group
G in detail. The semi-direct group is defined as below,

G := Z/prZ o Z/qsZ (1)

with p, q prime and r, s ∈ Z+. Let Z/prZ and Z/qsZ
be finite, cyclic, abelian groups and φ : Z/qsZ →
Aut(Z/prZ) be the homomorphism that defines G, with
φ(0) the identity operation on Z/prZ. The elements
of G are (a, b) where a ∈ Z/prZ, b ∈ Z/qsZ.
The product of the group elements are defined as,
(a, b)(c, d) = (a + φ(b)(c), b + d), the inverse as,
(a, b)−1 = (φ(−b)(−a),−b) and (0, 0) is the identity
of G. The order of the group is prqs and by Burnside’s
Theorem (Theorem 9.3.2, [9]) we know that G is solvable.

13

We note that G has only two Sylow subgroups (up
to isomorphism), the Sylow p-subgroup Z/prZ and
the Sylow q-subgroup Z/qsZ both of which are also
cyclic. This enables us to employ an existing theorem
(Theorem 9.4.3, [9]) which states that G is metacyclic.
Moreover by definition of G, N := Z/prZ × {0} is
a normal subgroup of G, and the quotient group is
G/N = {xN |x ∈ G} = {(0, h)N |h ∈ Z/qsZ}. Since
(0, h1)N(0, h2)N = (0, h1)(0, h2)NN = (0, h1 +h2)N .
We can now see that G admits a finite normal series as,
(A0 =)GC(A1 =)Z/prZC(A3 =)(0, 0), and hence G is
supersolvable. This means that every subgroup, H ≤ G

is also supersolvable.

IV. IRREPS OF G

In this section, we give important properties of the
irreducible representations (hereon known as irreps) of
the group G. The motivation to use representation theory
was natural due to its formulation; group elements are
matrices and the group operation is represented as matrix
multiplication. Moreover, the check for reversibility of
a quantum algorithm is akin to checking for unitarity of
the operations involved, which is straightforward in linear
algebra.

The little group method of Wigner and Mackey can be
used to enumerate the irreps of G = Z/prZ o Z/qsZ
[10] . We designate G = A o H such that A = Z/prZ
and H = Z/qsZ, and note that A is abelian. Using the
above-mentioned method we enumerate the irreps of the
following dihedral group, G = Z/3Z o Z/2Z as having
two irreps of dimension 1 given by, ∀g ∈ G,Π(g) = 1,
and

Π(g) = Π((a, h)) =

1 if h = 0

−1, if h = 1

Π(g) =

1 if g ∈ A
−1, otherwise

and one irrep of dimension 2 given by,

Π((0, 0)) =

[
1 0

0 1

]
,Π((1, 0)) =

[
exp(i2π3) 0

0 exp(i4π3)

]
,

Π((2, 0)) =

[
exp(i4π3) 0

0 exp(i2π3)

]
,Π((0, 1)) =

[
0 1

1 0

]
,

Π((1, 1)) =

[
0 exp(i2π3)

exp(i4π3) 0

]
,

Π((2, 1)) =

[
0 exp(i4π3)

exp(i2π3) 0

]
,

as expected. Apart from enumerating the irreps, we have
also been able to come up with the fact that the only
possible dimensions of irreps of G are 1, and qt, and that
there are exactly qs irreps of dim-1, and (pr − 1)q(s−2t)

irreps of dim-qt, where 1 ≤ t ≤ s.

V. FUTURE WORK

We have so far been successful in classifying the group
G as supersolvable and also in extracting its irreps. We
wish to make use of the fact that any representation of
a group G can be represented by direct decomposition
of the irreps of G and be able to find the irreps of
any subgroup, H ≤ G. In other words, the irreps of
G are guaranteed to describe the representation of every
possible subgroup H ≤ G, even uniquely, but only when
decomposed in the right way. Having identified the irreps
of H , we will use this fact to implement a quantum
algorithm which we hope will efficiently solve the HSP
in the case concerned.

VI. REFERENCES
[1] P. W.Shor. Algorithms for quantum computation: discrete loga-

rithms and factoring. 35th Annual Symposium on Fundamentals
of Comp. Science, pp 124-134, 1994

[2] D.Simon. On the power of quantum computation. 35th Annual
Symposium on Fundamentals of Comp. Science, pp 116-123, 1994

[3] A. Y. Kitaev. Quantum measurements and the Abelian stabilizer
problem. arXiv:quant-ph/9511026, 1995.

[4] M. Ettinger and P. Høyer. On quantum algorithms for noncommu-
tative hidden subgroups. Adv, in Appl. Math., (25): pp 239-251,
2000.

[5] D. Bacon, A. M. Childs, and W. van Dam. From optimal mea-
surement to efficient quantum algorithms for the hidden subgroup
problem over semi-direct product groups. In 46th Annual Sympo-
sium on Fundamentals of Comp. Science, pp 469-478, 2005.

[6] Y. Inui amd F. Le Gall. An efficient quantum algorithm for the
hidden subgroup problem over a class of semi-direct product
groups. Quantum Information and Computation, (5): pp 559-570,
2007.

[7] D. N. Gonçalves, R. Portugal, and C.M. M. Cosme. Solutions
to the hidden subgroup problem on some metacyclic groups. 4th

Workshop on Theory of Quantum Computation, Comm. and Cryp-
tography., 2009

[8] C. Lomont. The Hidden Subgroup Problem - Review and Open
Problems. arXiv:quant-ph/0411037v1, 2004.

[9] M. Hall Jr. The Theory of Groups. American Mathematical Society,
2nd Edition, 1999.

[10] J. P. Serre. Linear Representations of Finite Groups. Springer,
1977.

14

A Distance Based Algebra for Boolean Expression Queries over Large Networks

Arijit Khan
Computer Science, University of California, Santa Barbara

arijitkhan@cs.ucsb.edu

Abstract—A Boolean expression query consists of several
negated and non-negated predicates connected by logical oper-
ators. Due to noise and the lack of fixed schema in information
networks, it is often difficult to evaluate such queries. In this
situation, the distance between two entities in the network
provides a measure of how likely they are related to each other.
Using this concept, we propose a novel distance-based algebra
to define the top-k results for Boolean expression queries.
We also provide a polynomial-time algorithm to efficiently
answer Boolean-expression queries over large-scale networks.
Empirical results show that our proposed technique can quickly
find high-quality results in large networks.

I. I NTRODUCTION

In a wide array of disciplines, data can be modeled as
an interconnected network of entities, and various attributes
could be associated with both the entities and the relations
among them. Examples of such systems include the World-
Wide Web, social networks, biological networks, and online
documents. Querying these information networks becomes
important with a variety of applications including informa-
tion extraction and pattern discovery.

In this paper, we consider Boolean expression queries
over large networks. A Boolean expression query consists
of several negated and non-negated predicates connected
by logical operators. Hence, our objective is to identify
the entities in the network that satisfy a given Boolean
expression query. For example, let us consider the following
query overIMDB movie network.

Example 1. Find an actor who worked with both the
directors “James Cameron” and “Michael Apted ”, but did
not work with the director “Steven Spielberg”.

The aforementioned query can be written as a Boolean
expression query as follows.Q1 = P1 ∧ P2 ∧ ¬P3, where
P1 ≡ actor worked with director “James Cameron”,P2 ≡
actor worked with director “Michael Apted”,P3 ≡ actor
worked with director “Steven Spielberg”. Observe that the
query Q1 consists of two non-negated and one negated
predicates, and they are connected by conjunctive operators.

When the exact entity types, their names and relations
are known in the dataset, such queries can be answered
accurately,e.g.,using SQL. However, real-life information
networks often lack standardized schemas. For example, in
a movie network, there may be direct links between the
actors and the director of a movie; or sometimes they can
be indirectly connected via the corresponding movie. The

exact entity names and the semantics of a link might also
be unknown to the users. Therefore, it becomes difficult
to answer such Boolean expression queries accurately over
information networks.

If the schema and the semantics of the edge labels are
not known, we argue that the distance between two entities
in the network provides a measure of how likely they are
related to each other [3]. For example, in our previous query,
the required actor node should be close to both the director
nodes, “J. Cameron” and “M. Apted”, but far from “S.
Spielberg”. Using this concept, we propose a distance based
graphalgebra, calledgAlgebra, that outputs a ranked list of
relevant nodes, for a given Boolean expression query.

We should also mention that the state-of-the-art ranked
keyword search problem in graphs and XML documents
[2] usually identifies the top-k nodes that are close to a
given set of keywords. Therefore, the ranked keyword search
is a specific case ofgAlgebra, where several non-negated
predicates are connected by only conjunctions.

II. PRELIMINARIES

An information network can be modeled as a labeled,
undirected graphG = (VG ,EG , LG) with node setVG , edge
set EG , and label functionLG , where (1) each nodeu ∈
VG represents an entity in the network, (2) each edgee ∈
EG denotes the relation between two entities, and (3)LG
is a function which assigns to each nodeu ∈ VG a set of
labelsLG(u) from a finite alphabet. In practice, the node
labels may represent the entity attributes,e.g.,name, type,
etc. Next, we introduce fuzzy relation, which is the basic
building block ofgAlgebra.

Fuzzy Relation. For each nodeu ∈ VG , we define a fuzzy
relationR(u) as a set of tuples. Each tuple consists of a node
v ∈ VG \ {u}, and its membership function valueµ(u, v).

µ(u, v) = αd(u,v); R(u) = {〈v, µ(u, v)〉|v ∈ VG \ {u}}

Here, d(u, v) is the distance (in hop counts) ofv from
u in the network, andα is a constant between0 and 1.
Therefore, the value of the membership function decreases
exponentially with respect to the distance between two
nodes. Observe that each predicate in a Boolean expression
query may define multiple fuzzy relations,e.g.,the predicate,
P1 ≡ who worked with director “James Cameron”, defines

15

a set of fuzzy relations for each nodeu, whereu’s label,
LG(u) closely matches with “James Cameron (director)”.
Such a nodeu is referred to as adefining nodefor predicate
P1. Due to limitation of space, we shall assume that each
query predicate has only one defining node.

The logical operators are defined below.

Negation. Let u be the defining node for predicateP1. Then
the corresponding fuzzy relation for the negated predicate
¬P1 is denoted byR(¬u), and is defined as follows.

µ(¬u, v) = −αd(u,v);

R(¬u) = {〈v, µ(¬u, v)〉|v ∈ VG \ {u}}
Conjunction. Let u andv be the defining nodes for predi-

catesP1 andP2, respectively. The corresponding fuzzy rela-
tion for the conjunction,P1∧P2 is denoted asR(u)∧R(v).

µ(u ∧ v, w) = µ(u,w) + µ(v, w)

R(u) ∧ R(v) = {〈w, µ(u ∧ v, w)〉|w ∈ VG \ {u, v}}
Disjunction. If u andv are the defining nodes for predicates

P1 andP2, respectively, then the corresponding fuzzy rela-
tion for the disjunction,P1 ∨P2 is denoted asR(u)∨R(v).

µ(u ∨ v, w) = max{µ(u,w), µ(v, w)}
R(u) ∨ R(v) = {〈w, µ(u ∨ v, w)〉|w ∈ VG \ {u, v}}
We are now ready to define our problem statement.

Problem Statement 1.Given a networkG = (VG ,EG , LG)
and a Boolean expression query, find the top-k nodes with
maximum membership function values.

III. A LGORITHMS FORgAlgebra

We propose efficient algorithm to determine the top-k
result nodes, for a given Boolean expression query.

Theorem 1. Any Boolean expression query can be con-
verted into an equivalent query that is in Disjunctive Normal
Form (DNF), i.e., a disjunction of multiple clauses, where
each clause is a conjunction of several predicates.

Example 2.Find the actor who worked with “Ben Kings-
ley”, but not with “Marion Cotilland”; and also worked with
either director “James Cameron”, or “Christopher Nolan”.

Let us assume that nodesu, v, w and z represent
“Ben Kingsley”, “Marion Cotilland”, “James Cameron” and
“Christopher Nolan”, respectively, inIMDB. Then the query
can be expressed asR(u) ∧ R(¬v) ∧ (R(w) ∨ R(z)). The
equivalent query in DNF will be(R(u)∧R(¬v)∧R(w)) ∨
(R(u)∧R(¬v)∧R(z)). Given a Boolean expression query in
DNF, we apply the following method based on the principle
of Threshold Algorithm [1] that finds the top-k result nodes.

Disjunctive Threshold Algorithm . Assume that the set
of clauses in the DNF queryQ are given by D =
{D1, D2, . . . , Dt}. For some clauseDj ∈ D, let us denote

by Vj the set of defining nodes for the non-negated predi-
cates inDj, and by¬Vj the set of defining nodes for the
negated predicates inDj. We start performing breadth first
search (BFS) in parallel from allv ∈ Vj , Dj ∈ D. For
each nodeu encountered at thei-th step of the BFS, we
calculate the aggregate value of the membership function of
nodeu. Also, we computesum(i) as defined below. At some
iterationi, if the top-k buffer is full, andsum(i) is less than
the smallest aggregate value of the membership function in
the top-k buffer, we terminate the process, following the
principle of Threshold Algorithm.

sum(i, j) = αi|Vj |; sum(i) = max
Dj∈D

sum(i, j)

IV. EXPERIMENTAL RESULTS

We evaluated our techniques on theYAGO dataset
(1, 768, 773 nodes;2, 199, 056 edges) from http://www. mpi-
inf.mpg.de. The entity names were treated as node labels.

A. Efficiency

Figure 1 shows the high efficiency achieved bygAlgebra
framework over large-scale networks. Each set of experi-
ments was repeated for100 Boolean expression queries. In
Figure 1, we report the average running time. Specifically,
our method finds the top-50 answers with5 query predicates
in less than1 second.

B. Case Study

Q1. Name the people who won both the Golden Globe and
Grammy awards; but not the Academy award.

The top-3 answers reported by our method is given in
Figure 2. Observe that they are indeed all correct answers.

 0.5
 0.6
 0.7

 0.9

 1.2

 1.5

 2 3 4 5

T
IM

E
 (

S
E

C
)

OF QUERY PREDICATES

TopK=5
TopK=20
TopK=50

TopK=100

Figure 1: Efficiency

1 E . Murphy
2 E. Merman
3 R. Harris

Figure 2: Top-3 Re-
sults (Q1)

V. CONCLUSION

In this work, we introduced the novel problem of perform-
ing Boolean expression queries in information networks with
unknown schema. In future, we may consider other relational
algebra operations,e.g.,aggregation queries in network data.

REFERENCES

[1] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InPODS, pages 102–113, 2001.

[2] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword
searches on graphs. InSIGMOD, pages 305–316, 2007.

[3] J. W. Kim and K. S. Candan. CP/CV: Concept Similarity Min-
ing without Frequency Information from Domain Describing
Taxonomies. InCIKM, 2006.

16

Identifying User Groups and Topic Evolution in

Web Discussions

Theodore Georgiou Manos Karvounis* Yannis Ioannidis*

Department of Computer Science

University of California, Santa Barbara

Santa Barbara, USA

teogeorgiou@cs.ucsb.edu

*Department of Informatics and Telecommunications

University of Athens

Athens, Greece

{manosk,yannis}@di.uoa.gr

Abstract—In this work we propose a new approach for

identifying agreement and disagreement relationships between

web forum participants and then, forming groups of agreeing

discussants. Unlike previous similar efforts, our method is

capable of extracting any number of groups and their pairwise

relations. Moreover, to make the identified groups as coherent

as possible, we propose a novel model for analyzing the

evolution of topic, since, in many cases, agreement-

disagreement relationships change as the discussion

progresses, especially in large threads with abstract titles. Our

approach is based exclusively on structural and temporal

features and, thus, the textual content of posts is not required.

I. INTRODUCTION

Web discussions constitute an integral part of the social

web. The purpose of our work is to extract the rich network

of agreement and disagreement relations formed during

multiparty discussions on debate topics. To achieve this, we

propose a method for identifying the pairwise relations

between the discussants, and then create groups that share

similar viewpoints. We firmly believe that the automated

extraction of this network can greatly enhance our

understanding of the dynamics of conversations in many

ways:

• As a basis for deeper analysis of the extracted network

(centrality, betweenness, bridge edges, etc.), to identify

key characteristics of the discussion.

• As a pre-processing step for NLP techniques that mine

the discussants’ opinions. Clearly, it is much easier to

extract these opinions if the agreement and

disagreement relations are already known [3].

• As an overview mechanism, to present the discussant

groups at a glance.

Although the core ideas of our method can be useful in
many forms of multiparty debates, in this work we focus on
discussions taking place in web forums. Web forum
discussions unfold inside independent threads, characterized
by their title. Like live discussions, a thread can easily
deviate from its initial topic, and new relations between the
discussants can be seamlessly created.

II. METHODOLOGY

Figure 1 shows an overview of the individual parts of our

method, and how they are combined to produce the final

results, i.e., groups of discussants and their relations.

Figure 1: Flowchart of our method

The cornerstone of our methods is the extraction of the reply

structure in the form of a tree (or forest, where applicable).

The nodes are the individual posts inside the thread, and

edges indicate that one post quotes and replies to the other.

All the features we use are structural and temporal and are

directly extracted from this tree.

To make the reply tree as complete as possible, we identify

implicit reply connections using a trained SVM classifier.

More specifically, we determine if an orphan post replies to

the exact previous one. A post is considered orphan when it

replies to other posts but doesn’t explicitly quote them, a

property that describes about 10% of the total number of a

thread’s posts. Our classifying technique is again structure-

based, and has an accuracy of 75.4%.

Our next task is to partition the discussion into parts so that

each contains one, specific topic. Clearly, new topics may

mean new discussant relations, so we need to identify them

and handle them separately. This is a novel addition since

existing methods assume such relations to be static, a

property rare in long discussions.

The last step is the group creation method, which consists of

two tasks: (1) identification of discussants’ pairwise

relations and (2) clustering agreeing discussants into groups.

These groups are created separately for each discussion sub-

topic.

Our structure-only approach provides a number of

advantages over NLP and hybrid approaches:

• It is independent from the language of the conversation.

• The text of the conversation need not be provided, thus

solving privacy issues that frequently occur.

17

The main contribution of our work is the merging of
topic evolution and agreement estimation into one concrete
task aiming to extract the social network of online
discussions. Moreover, we exploit the users’ interaction
patterns during a discussion to derive heuristics that only
utilize structural features to achieve that.

A. Discussion Segmentation

Key observations for identifying when the discussion topic

changes are the following:

• Topics discussed in a threaded discussion do not cover more

than one or two thematic areas [2]. On the other hand, sub-

topics are numerous and usually clustered together [5]
(parallel discussions are rare).

• Dense discussant activity can result in topic changes. The

opposite is also applicable; when activity is sparse, the topic
is more likely to remain the same [empirical observation].

• When the topic changes significantly, it is unlikely that

discussants will reply to posts from the previous part of the
discussion.

To solve the discussion segmentation problem we need to

identify areas in a thread where (a) local discussant activity

(DA) is high and (b) local reply connections (RC) have

short length. We measure the length between two connected

posts as the number of other replies posted in between them

(when viewed in temporal order).

We compute the derivatives of the two metrics DA and RC

and search for points where a local DA maximum is close to

a local RC minimum. In the example shown in Figure 2,

that would be between posts 440 and 450. Since DA and RC

are discrete variables the derivative is defined as:

where x is the number of post.

Figure 2: Normalized plots of the two functions in a real discussion

B. Agreement/Disagreement Discovery

For each pair of discussants, we create a feature vector and

classify it as an agreement or disagreement using a manually

trained classifier. The main observation supporting all the

features we use is the following:
During a debate, the discussants devote most of their limited

resources (time, effort) towards interacting with those that most

threaten their arguments, i.e., those with whom they disagree.

Similar ideas have been used in previous works with

significant success [4]. For each pair of users we define a 3-

dimensional vector using the following features:
target_similarity(,) = cosine_similarity(targets(), targets())

reply_focus(,) =

reply_coverage(,) =

where:

targets() =

< , ,…, ,0,

,…, >

III. EVALUATION

For a preliminary evaluation of our methods we utilized

synthetic data that we created extending the models

proposed by Kumar et al. [1] and Lin et al. [2] for

simulating topic evolution, creating realistic reply tree

structures and adding agreement/disagreement relations.

We were able to create many different discussion evolution

structures and reply trees using a wide variety of value

combinations on the models’ parameters. Table 1 shows the

precision/recall of the discussion segmentation method

(evaluated separately) and precision of the final group

creation method.

Method Evaluation

Discussion Segmentation Precision: 82% Recall: 75%

Group Creation Precision: 76%

The results seem very encouraging and on par with recent

attempts on discussion segmentation and agreement-

disagreement discovery.

IV. FUTURE DIRECTIONS

An essential task to complete the current work would be to

create a large corpus of labeled real discussions to

thoroughly evaluate and compare our methods with non-

synthetic data. To the best of our knowledge such a dataset

does not exist yet and would be an important contribution to

the area of discussion mining.

REFERENCES

[1] Ravi Kumar, Mohammad Mahdian and Mary McGlohon. 2010.

Dynamics of conversations. In Proceedings of KDD '10.

[2] Lin, C., Yang, J., Cai, R., Wang, X., Wang, W. and Zhang L. 2009.

Simultaneously Modeling Semantics and Structure of Threaded

Discussions: A Sparse Coding Approach and Its Applications. In
Proceedings of SIGIR '09.

[3] Chenhao Tan, Lillian Lee, Jie Tang, Long Jiang, Ming Zhou, and

Ping Li. 2011. User-level sentiment analysis incorporating social
networks. In Proceedings of KDD '11.

[4] Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan Srikant, and

Yirong Xu. 2003. Mining newsgroups using networks arising from

social behavior. In Proceedings of WWW '03.

[5] Adams, P. H. and Martell, C. H. 2008. Topic Detection and
Extraction in Chat. In Proceedings of ICSC '08.

18

Delay Tolerant Disaster Communication Using the One
Laptop Per Child XO

Daniel Iland and Don Voita
University of California, Santa Barbara

Department of Computer Science
{iland,don}@cs.ucsb.edu

Abstract—In this paper, we describe the design, implementation, and
testing of a peer-to-peer disaster messaging application for the One
Laptop Per Child XO laptops. Our contributions are to implement a
disaster communication network using an epidemic messaging scheme
with cures on Ad-Hoc networks of OLPC XO laptops, extend the Ushahidi
web application to accept messages originating from our OLPC peer-to-
peer network, and allow the Ushahidi server to generate and distribute
cures for each received message. We analyze and evaluate the network
traffic, power consumption, and efficiency of this epidemic messaging
scheme.

Keywords-Delay Tolerant Networks; Disaster Networks; Epidemic
Routing; OLPC; Ushahidi

I. INTRODUCTION AND MOTIVATION

The importance of utilizing user generated reports in disaster
response efforts has been recognized in recent years, as evidenced
by the widespread adoption of web-based crisis mapping applications
such as Ushahidi. Ushahidi is an open source application for re-
ceiving, curating, and displaying geographically tagged information.
Helping individuals in the affected area to share information with
each other and first responders can improve aid distribution, search
and rescue efforts, damage assessment, regional security, and other
humanitarian efforts.

II. DESIGN AND IMPLEMENTATION

A. Developing for OLPC

The OLPC project was designed with collaboration in mind.
Software packages, called Activities, can be shared amongst users on
an Ad-Hoc or Mesh network. An activity is a bundle of Python code
and all associated libraries. Our activity is an OLPC activity that is
shared between XO Laptops (XOs) using an Ad-Hoc network. When
an XO joins a shared activity, it broadcasts messages and cures to
other XOs participating in the activity. When a batch of messages
and cures is received, they are serialized and stored on the devices
flash memory. If an XO finds Internet connectivity, it uploads all
uncured messages to the Ushahidi deployment, and downloads all
known cures. Messages which have been ’cured’ are no longer shared.

B. Implementation of Shared Messages

We use an epidemic messaging scheme for sharing of all messages
and cures. Since we do not prioritize the transfer of cures over
messages, our application uses passive cures.[1] While other delay-
tolerant messaging schemes are more efficient, we feel in a disaster
scenario it is important to maximize message delivery probability.[3]

To accomplish data synchronization, we utilized CausalDicts,
shared data structures provided by the groupthink library. A Causal-
Dict is a Python dict that is automatically shared between all XOs
which have joined a shared activity. We use two CausalDict objects,
one containing all messages and the other containing all cures. By

using a hash derived from the message as the key, we ensure that all
copies of a message are cured. Messages are tuples containing the
title, content, category, location, time, and message hash.

OLPC designed the XO with an infrastructure free children sitting
under the tree scenario as a primary use case. This sharing is pri-
marily accomplished by two services, an interprocess communication
system called D-Bus and a real-time communication framework
called Telepathy. Telepathy allows applications running on different
machines to communicate via an abstraction called tubes. Tubes are
used to pass text and data, and can be implemented via a number of
backend Connection Managers or protocols.

XOs use the Telepathy Salut protocol when connected to an Ad-
Hoc network. On the network layer, Telepathy Salut uses multicast
DNS (mDNS), and link local Extensible Messaging and Presence
Protocol (XMPP) for device and service discovery. The XMPP
protocol enables server-less messaging between clients via mDNS.
Multi-user messaging, and therefore activity collaboration on the XO,
is accomplished via an extension of XMPP called the Clique protocol.

C. Implementation of Ushahidi Plugin

When a device obtains internet access, it will upload each of its
uncured messages to an Ushahidi server using Ushahidi’s json API.
The user-provided location string will be geolocated so the message
can be placed on the map.

III. TESTING AND CHARACTERIZATION

A. Testing Approach

We tested how well our activity shared messages and cures, the
network overhead involved in epidemic message passing between
nodes, and power consumption of idle and active nodes. Our testbed
consisted of 8 XO-1.5 laptops joined in an 802.11b/g Ad-Hoc
network. We were able to directly monitor net battery discharge, by
polling the value of an Accumulated Current Register (ACR) every
20 seconds. We used a laptop running Wireshark in Monitor Mode
to capture the network traffic generated by each device.

We ran three tests, the first injecting 100 messages into the network,
the second injecting 500 messages, and the third testing range and
mobility indoors and outdoors to determine the maximum effective
distance at which our activity shares data. In the third test, we
used one mobile node to bridge two disconnected groups of nodes,
one with Internet access. The mobile node received messages from
group A, then was physically moved to be in range of group B.
Messages from group A were delivered to group B, and uploaded
to the Ushahidi server. Upon upload, the Ushahidi server generated
and provided cures to the uploading node. These cures were passed
back to our mobile node, which returned to the area of group A and
delivered these cures.

19

B. Testing Results

Our experimental results show that our application works as
expected, but is inefficient due to additional protocol overhead
from Telepathy Salut. We also confirm the direct link between
power consumption and wireless radio usage on XOs. Our tests
show the wireless radio range of the OLPC is excellent (up to 350
meters) in areas with few obstructions, while still being acceptable
(86-96 meters) in a campus setting with many obstructions and
potential causes of multi-path fading (such as concrete buildings,
trees, people, brick walls, and a building emergency power generator).

1) 100 and 500 Message Tests: Our experiments show messages
account for the largest percentage of bytes, but less than 20% of
overall packets. An unacceptably high percentage of both packet
transmissions and throughput were used for Clique Overhead. Clique
Overhead includes negotiation between clients to set up Telepathy
tubes. These tubes allow for inter-machine communication. In our
100 message test, these overhead packets represent over 50% of
the overall packets. In the 500 Message test, Clique Overhead is
responsible for over 87% of the total packets, a striking increase. As
observed in our 500 message test, the establishment and maintenance
of inter-machine communication was extremely inefficient. In this
test, of 788,884 total packets, 693,655 were Clique packets smaller
than 120 bytes. Each packet contained 14 bytes or less of usable data,
which represents at least 88.3% overhead per packet. We suspect this
severe overhead is the main cause of only 5 of 8 nodes successfully
receiving all messages.

2) Power Consumption: Over the course of both tests, we were
able to directly monitor net battery discharge from each XOs bat-
tery. Figure 1 shows power consumption on the XO laptop named
kangaroo. These results are representative of the other 7 XOs. As
this graph shows, there is a strong correlation between the amount
of data transferred and power consumption. Power consumption
decreases as the number of bytes transmitted decreases. Therefore
minimizing transmissions can play an important role in increasing
network and device lifetime.1 Our relatively inefficient epidemic
messaging scheme likely uses more power than more conservative
schemes, such as PRoPHET.[2]

Fig. 1. ‘kangaroo’ receiving and forwarding 500 messages

1We observed relatively flat power consumption of these machines in an
idle state (measured, but not shown).

IV. FUTURE WORK

Deploying on OLPC devices allows us to reach over 2.5 million
students and teachers on 6 continents. As we proceed, other benefits
include the open source nature of the project, and the broad spectrum
of deployments, from dozens of XOs in rural villages in Australia
and Africa to tens of thousands in Urban areas in Peru. Deploying a
similar application to Android devices will allow us to reach hundreds
of millions of users.

We have shown in our tests that power utilization is directly corre-
lated with wireless radio utilization. One potential power-saving op-
timization would opportunistically increase the time between checks
for an Internet connection, polling only when associated with an
access point, when a neighbor informs an XO that it has recently
had Internet access, or when the XO has uncured messages to send.

Switching from the OLPC’s Telepathy based sharing system to a
system utilizing UDP broadcasts will reduce overhead, enable inter-
operability with the Android-based system, and reduce unnecessary
transmissions.

REFERENCES

[1] K. A. Harras, K. C. Almeroth, and E. M. Belding-Royer. “Delay Tolerant
Mobile Networks (DTMNs): Controlled Flooding in Sparse Mobile Net-
works.” In Proceedings of the IFIP-Networking, Waterloo, Canada, May
2005.

[2] A. Lindgren, A. Doria, and O. Schel. “Probabilistic Routing in Inter-
mittently Connected Networks.” SIGMOBILE Mobile Computing and
Communications Review, Volume 7, Issue 3, July 2003.

[3] L. Song and D. Kotz. “Evaluating Opportunistic Routing Protocols with
Large Realistic Contact Traces.” In Proceedings of CHANTS, Montreal,
Canada, September 2007.

20

Mirror Mirror on the Ceiling:
Flexible Wireless Links for Data Centers

Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li§, Saipriya Kumar, Amin Vahdat†, Ben Y. Zhao and Haitao Zheng
Department of Computer Science, U. C. Santa Barbara, USA

§Xi’an Jiaotong University, P. R. China †Google and U. C. San Diego, USA
{xiazhou,zengbin,yibo,saipriya,ravenben,htzheng}@cs.ucsb.edu, heatonlyb@gmail.com, vahdat@cs.ucsd.edu

I. INTRODUCTION

Modern distributed applications can run in data centers
at massive scale. The bandwidth requirements of these ap-
plications can range from the relatively modest to substan-
tial. Delivering such bandwidth comes at substantial cost for
the switching infrastructure. As a result, recent efforts have
investigated techniques to deploy more efficient data center
network topologies.While these alternate topologies offer a
range of benefits over the current state of the art, there are
a number of inherent challenges with the deployment of any
wired network technology. These include the cost, complexity,
and inflexibility entailed by tens of thousands of fibers.

In this work, we focus on high-throughput, beamforming
wireless links in the 60 GHz band. The unlicensed 60 GHz
band provides multi-Gbps data rates and has small interference
footprint. In particular, we identify two key limitations of
existing 60 GHz proposals, and investigate the feasibility of
60 GHz 3D beamforming as a flexible wireless primitive in
data centers. In 3D beamforming, a top-of-rack directional
antenna forms a wireless link by reflecting a focused beam off
the ceiling towards the receiver. This reduces its interference
footprint, avoids blocking obstacles, and provides an indirect
line-of-sight path for reliable communication. Such a system
requires only beamforming radios readily available, and near
perfect reflection can be provided by simple flat metal plates
mounted on the ceiling of a data center.

While wired networks will likely remain the vehicle for the
high-end distributed computing, we believe that efforts such
as 3D beamforming can expand the applicability of wireless
networking to a broader range of data center deployments.

II. 60 GHZ LIMITATIONS

Existing designs adopt 60 GHz wireless technologies for
several reasons. First, the 7GHz spectrum available in this
band can deliver the multi-Gbps data rates required by data
centers. Second, 60 GHz links operate at a high carrier
frequency, which limits the interference they generate, and is
highly beneficial to data centers with dense rack deployments.
Third, 60 GHz links can use beamforming to enhance link rate
and further suppress interference. Today, 60 GHz beamforming
radios are readily available and affordable, either as directional
(horn) antennas [4] or antenna arrays [3]. They use either
mechanical or electronic mechanisms to achieve fine-grain
directional control.

Link Blockage. Link blockage is a limiting factor for 60
GHz links. The 5mm wavelength of these links means that
any object larger than 2.5 mm can effectively block signals
or reflect them, producing multipath fading and degrading
transmission rates. In today’s data centers, this is problematic
because racks are organized in a grid, and transceivers and
antennas on one rack can easily block transmissions on another
rack. This has led to current designs limiting themselves to
connecting neighboring racks (see Figure 1(c)).

Radio Interference. Despite the use of beamforming to
bound the transmission energy in a “narrow” direction, radio
interference remains an issue for these systems. Radio design
artifacts will still produce signal leaks outside of the intended
direction. When placed in a dense rack formation, leakage
produces harmful interference between nearby links and limits
the density of concurrent links.

The spread of radio interference significantly limits the
number of concurrent wireless links in a data center. One
option is to separate the links in the frequency domain. But
this reduces the per-link capacity, since the total available
bandwidth is fixed across the frequency range. Alternatively,
data center managers can increase the spacing between racks
to reduce interference. But this leads to inefficient space and
power usage, and weakens long-distance links.

III. WIRELESS 3D BEAMFORMING

To address these limitations, we propose 3D beamforming,
a new beamforming approach that leverages ceiling reflec-
tions to connect racks wirelessly. An example is shown in
Figure 1(d), where a transmitter bounces its signal off of the
ceiling to the receiver. This creates an indirect line-of-sight
path between the sender and receiver, bypassing obstacles
and reducing interference footprint. To align its antenna for
a transmission, the sender only needs to know the physical
location of the receiver rack, and point to a position on the
ceiling directly between the two racks.

3D beamforming requires three hardware components:
• Beamforming Radios: We reuse beamforming radios [3],

[4] and adjust beam directions in both azimuth and ele-
vation by placing the horn antennas on rotators. Existing
rotators can achieve an accuracy of 0.006◦-0.09◦.

• Ceiling Reflectors: Reflectors act as specular mirrors to
reflect signals. Our experiments confirm prior work show-21

(a) Rack-based DC (b) Container-based DC

TX RX

(c) 2D Beamforming

TX RX

(d) 3D Beamforming
Fig. 1. Radio transceivers are placed on top of each rack (a) or container (b). Using 2D beamforming (c), transceivers need to forward traffic in multiple
hops to non-neighboring racks. Using 3D beamforming (d), the ceiling reflects the signals from each sender to its receiver, avoiding multi-hop relays.

ing that flat metal plates offer perfect reflection without
degrading energy or changing path loss characteristics.

• Electromagnetic Absorbers: We place electromagnetic ab-
sorbers near each antenna to prevent any local reflection
and scattering. These absorbers require no maintenance.

A. Microbenchmark Results

Using detailed hardware experiments, we examine the key
properties of 3D beamforming by comparing to 2D systems.

3D Beamforming Testbed. Our local testbed consists of
two 60GHz beamforming radios from HXI [2], a 4ft×8ft
metal reflector, and RF absorbers from ETS-Lindgren [1]. We
test two types of reflectors: commercial-grade mirror-quality
stainless steel plates and off-the-shelf cheap galvanized steel
sheets from our local home improvement store. To assist with
rapid experimentation, we mount the reflector vertically on a
mobile platform that stands in parallel to a line connecting
the center of the two radio transceivers. We vertically align
platform using multiple hanging plumb-bobs. The correspond-
ing ceiling height h is the perpendicular distance between
the reflector and the line. To prevent reflected signals from
producing more reflections at the receiver side, we place
RF absorbers under the antenna. The absorber is a surface
tiled with small pyramids 7.5cm thick. It does not block 3D
transmit/reflection paths, but eliminates additional reflections.
Finally, we manually calibrate the orientations of the horn
antennas, using high precision laser pointers for guidance.

Property 1: Extended Link Connectivity. Our first ex-
periment looks at link connectivity. Intuitively, using ceiling
reflection, 3D beamforming will bypass obstacles in the hor-
izontal plane, eliminating the antenna blockage problem of
its 2D counterpart. More importantly, since ceiling reflectors
should produce no loss, it should produce an indirect LOS
path following the free-space propagation model.

Our measurement results match the model, confirming that
both beamforming methods follow the free-space propagation
model, and that the reflector introduces no energy loss. We
also observe that both type of reflectors (commercial-grade
and cheap steel plates) offer perfect reflection.

Property 2: Reduced Radio Interference. Our second
experiment examines the interference footprint of both 2D and
3D beamforming. For both methods, we first set up a target
transmission link X , then keep the transmitter intact and move

the receiver around to measure link X’s power emission map.
We divide the measurement space into 0.3m×0.15m grids. In
each grid, we rotate the receiver antenna to locate the direction
with the maximum signal strength, subtract this strength by
the receiver antenna gain, and use the result as the maximum
interference that link X produces to this location.

We observe that for 2D beamforming, the directional wave
still propagates freely in its beam direction, affecting other
receivers along the path. The signal leakage also contributes to
the level of interference. In contrast, 3D beamforming bounds
the interference region to a much smaller area, and limits the
impact of signal leakage. Please refer to [5] for more results.

Summary. Our testbed experiments verify that 3D beam-
forming largely addresses the main limitations of existing 60
GHz proposal. This means that we can connect most or all rack
pairs using single hop links, thus maximizing bandwidth and
eliminating forwarding delays. It also means a large number
of links can be active in a small area without causing mutual
interference and limiting performance.

B. Addressing Traffic Hotspots
We use network simulations to quantify 3D beamforming’s

ability to deliver additional bandwidth in data centers, and
its advantages over its 2D counterpart. We use wireless links
to cover traffic hotspots atop an existing wired network. Our
findings are as following. First, in data centers with random
traffic, 2D beamforming restricted to neighboring racks can
only address a very limited (∼ 3%) portion of traffic hotspots,
compared to 100% for single hop 3D beamforming links.
Second, for many scenarios with bursty traffic hotspots, using
3D beamforming links in conjunction with the existing wired
network can generally reduce completion time by half or more.
Finally, when sizable payloads are involved, e.g. 128MB,
antenna rotation delays only contribute a small portion of the
overall completion time, and much of that can be recovered
using simple heuristics such as choosing radios that are closer
to the desired transmission angle.

REFERENCES

[1] ETS-Lindgren. http://ets-lindgren.com/Absorbers.
[2] HXI Milimeter Wave Products. http://www.hxi.com/.
[3] SiBeam. http://sibeam.com/whitepapers/.
[4] HALPERIN, D., ET AL. Augmenting data center networks with multi-

gigabit wireless links. In Proc. of SIGCOMM (2011).
[5] ZHOU, X., ET AL. Mirror mirror on the ceiling: Flexible wireless links

for data centers. In Proc. of SIGCOMM (2012).

22

ImmuNet: Improved immunization of children
through cellular network technology

Mariya Zheleva, Ceren Budak, Arghyadip Paul, Biyang Liu, Elizabeth M. Belding, and Amr El Abbadi
Department of Computer Science University of California, Santa Barbara

{mariya, cbudak, arghyadip, bliu, ebelding, amr}@cs.ucsb.edu

Abstract—Vaccination distribution and tracking, especially in
remote areas in the developing world, is an important problem
that can benefit from recent technological improvements in at-
taining more effective distribution mechanisms. In this paper we
describe ImmuNet, a system that utilizes cellular network tech-
nology and allows rapid determination of immune status; reliable
updates of vaccination records and quick targeted dissemination
of vaccination availability in rural areas. In Summer 2012 our
research team traveled for three weeks to the rural village of
Macha, Zambia to deploy one of ImmuNet’s modules and also
to conduct interviews to gain understanding for immunization
practices in remote rural areas.

I. PROBLEM MOTIVATION

While vaccination has lead to the successful eradication
of a number of diseases in the developed world, developing
countries still fall behind in implementing high-coverage im-
munization strategies. According to statistics from the World
Health Organization, 1.5 million children died in 2010 from
diseases preventable by vaccines. The highest percentage,
42%, of the cases were in the African region and 29%
were in South East Asia. Most of the deaths were caused
by Hib Meningitis, Measles, Pneumonia and Tetanus; all of
these are diseases that can be prevented through vaccination.
In many cases vaccines are available; however, vaccination
schedules are difficult to enforce due to missing or incomplete
information about vaccination availability and individuals who
need immunization.

There is increased effort in incorporating Information and
Communication Technology (ICT) to improve vaccination dis-
tribution to children and infants [1], [2]; however, such systems
are often designed according to western models and operate
under assumptions that do not hold in developing countries.
One typical assumption is that personal immunization history
can be kept easily by the health workers as they perform
vaccinations. Our work with the immunization staff from the
Mission Hospital at Macha, Zambia, unveils that immunization
clinics are often understaffed and keeping personal records
along with the day-to-day immunization routines is a very
time consuming and challenging task.

Another common assumption is that digitalizing immuniza-
tion records would help significantly improve the efficiency
of storing and accessing patients data. Technology including
such that facilitates digital data entry is just being introduced
in the developing world. Thus, otherwise skillful health care
staff often lacks basic technical skills such as typing. In

fact, our work in Macha shows that at best people can hunt
and peck and these are typically people involved with IT,
not the health workers. As a result, digital data entry could
turn into an additional hurdle that needs to be tackled by
the already overworked health care staff. Furthermore, while
adopting digital data entry, the immunization clinics still need
to maintain their traditional practices of paper data entry, as
this paper work is required on regular basis by the government
officials. This results in doubling the effort put into keeping
immunization history.

Challenges in distribution of vaccines are not only related
to data entry and personal immunization history but also
to outreach, especially to parents with children under the
age of five, who do not attend school yet. Traditionally,
information about vaccination schedules and availability is
distributed through posters, word of mouth and in Macha,
through the local community radio. Information is typically
disseminated a few days or even weeks in advance, and as
one of our interviewees from Macha shares, ”It is very easy
to forget which day exactly was vaccination day and miss an
immunization”. Thus, having a technology that is intuitive to
people to help remind them for upcoming immunization events
is of great importance.

To address these challenges and facilitate efficient distri-
bution of vaccinations, we propose ImmuNet, a system that
leverages cellular network technology and database tracking
to keep individual immunization records. As most mandatory
vaccinations occur between the age of 0 and 5 years, ImmuNet
is designed for improved distribution of vaccinations to infants
and children under the age of five. This focus, coupled with
the specific vaccination practices in developing countries,
poses unique challenges in the system design. To operate
in rural areas with understaffed immunization personnel, the
system enables collection of personal data in digital format
that is submitted either by health workers or directly by
the parents. By utilizing local cellular network infrastructure,
the system provides prompt dissemination of information for
vaccine availability and schedules in the form of text messages.
ImmuNet can also record users’ network association time and
location and thus build patient interaction graphs to predict
disease spread patterns and vaccination needs. Based on these
interaction graphs, ImmuNet provides an alert system in the
form of a heat-map that notifies health workers for high risk
regions that need vaccinations.

23

Fig. 1. ImmuNet Architecture: ImmuNet uses VillageCell as a cellular
network platform and VaccStore as a database to collect patient identification,
to distribute immunization information and to generate high-risk alerts.

II. SYSTEM OVERVIEW

ImmuNet (Fig. 1) consists of two main components – a
database called VaccStore and a local GSM network called
VillageCell. While VaccStore is responsible for storing patient
data, VillageCell is the network that provides connection with
the patients. An engine, that runs on top of VaccStore is
responsible for collecting patient immunization and mobility
data from the network and sending alerts and reminders based
on this data.

VaccStore. A key part of ImmuNet is the VaccStore
database that stores personal biometric and identification data
for each person, as available, and their immunization sta-
tus. We implement VaccStore in MySQL, one of the most
commonly used relational database management systems. A
system that allows data to be submitted directly by the
patients, inherently needs to support search on a noisy dataset.
Such challenge cannot be handled with a traditional relational
database solution. Therefore VaccStore extends this traditional
paradigm to adapt to the requirements presented in the context
of vaccination in developing regions. There are two main ways
in which we extend the relational database paradigm: first
we introduce a probabilistic data model to capture incomplete
or uncertain data and, second, we incorporate basic diffusion
models to capture the spread of diseases and influence and to
create a social database.

VillageCell. We augment the original design of VillageCell,
first proposed in [3], to a system that as of July 2012 covers
an area of about 35 square kilometers in the village of
Macha, Zambia. The system deployed in Macha, uses two
RangeNetworks base stations that operate in the 1800 MHz
band and each provides a coverage range of 5-7 kilometers.
VillageCell uses open source and free software. Each base
station runs an implementation of the GSM stack called
OpenBTS. Calls are routed within or outside the local GSM
network through Private Branch Exchange (PBX) software
called FreeSwitch. To provide text messaging functionality
in the system we use smqueue, which provides a store and
forward SMS queue. This functionality is extremely important,
as we expect that users will typically not be in range at all
times, thus, their messages can be delivered in a delay tolerant
fashion whenever they re-associate with VillageCell. The two

VillageCell base stations deployed in Macha are connected
over a wireless backhaul, which is already available through
the village wireless infrastructure1.

III. INTERVIEWS IN MACHA

During our visit in Macha in June/July 2012, we conducted
interviews with 25 people from the area at the age of 17 to
48 years, to gain better understanding of cellphone usage in
rural areas as well as people’s perception of immunizations.
Each interview was conducted in person between one inter-
viewer and one interviewee. The interviewee’s participation
was voluntary and no material award was associated with
the participation. To facilitate the interview process, we hired
a woman from the community to introduce us to potential
interviewees and help with translation. With interviewees’
consent, 17 of the interviews were audio recorded.

The results from our interviews unveil that the benefit from
immunizations is very well understood in the local community.
All the people interviewed had been immunized when they
were young and some of them perceive immunization as a
”tradition” that needs to be followed, while others are keen
to immunize their children, having experienced themselves
the benefits of immunization in previous disease outbreaks,
when they ”did not suffer from the corresponding disease”
because they were immunized. Only one of the participants
who had a child under her care, did not do all recommended
immunizations; all other participants had immunized all their
children against all recommended diseases.

Cellphone usage too is widely adopted by people from the
community as well as health workers. 24 of the 25 intervie-
wees owned at least one cellphone and SIM card and all the
interviewees were very accustomed to using basic functionality
such as call and text messaging. 24 of the participants were
excited about the idea for using their cellphone to receive SMS
reminders for upcoming immunizations for their children.

IV. CONCLUSION

Incorporating technology for improved health care, espe-
cially in remote areas in the developing world, has had tremen-
dous success over the last few years. ImmuNet continues
in this direction by providing technology available at no
additional end user cost for improved distribution of vaccines.
Our work in the rural village of Macha, Zambia establishes
distribution of vaccines as an important problem that can
benefit from technological innovations. We are hopeful that by
using a widespread technology such as cellphones, our system
has great potential to improve the distribution of vaccines in
the developing world.

REFERENCES

[1] “http://www.childcount.org/.”
[2] J. G. Jørn Klungsøyr, “Using mobile phones to track immunizations,”

Wireless Health Organization, 2010.
[3] A. Anand, V. Pejovic, E. M. Belding, and D. L. Johnson, “VillageCell:

Cost effective cellular connectivity in rural areas,” ser. ICTD, Atlanta,
Georgia, March, 2012.

1http://www.machaworks.org/en/linknet.html

24

Breaking the Loop: Leveraging Botnet Feedback
for Spam Mitigation

Gianluca Stringhini, Manuel Egele, Christopher Kruegel, and Giovanni Vigna
Computer Security Lab, University of California, Santa Barbara
{gianluca, maeg, chris, vigna}@cs.ucsb.edu

Abstract—In this paper, we propose a novel technique to fight
spam. This technique leverages the observation that existing
spamming botnets leverage the feedback provided by mail servers
to tweak their operations, and send spam more effectively. We
show that, by sending wrong feedback to those clients that are
detected as spammers, we are able to impact the efficiency of
future spam campaigns sent by that same botnet.

I. INTRODUCTION

Email spam, or unsolicited bulk email, is one of the major
open security problems of the Internet. Accounting for more
than 77% of the overall world-wide email traffic [2], spam is
annoying for users who receive emails they did not request,
and it is damaging for users who fall for scams and other
attacks. Also, spam wastes resources on SMTP servers, which
have to process a significant amount of unwanted emails [6].
A lucrative business has emerged around email spam, and
recent studies estimate that large affiliate campaigns generate
between $400K and $1M revenue per month [1].

Nowadays, more than 85% of worldwide spam is carried out
by botnets. Spamming botnets typically use template-based
spamming to send out emails [3]–[5]. With this technique, the
botnet Command and Control infrastructure tells the bots what
kind of emails to send out, and the bots relay back information
about the delivery as they received it from the SMTP server.
This server feedback is an important piece of information to
the botmaster, since it enables him to monitor if his botnet is
working correctly.

Of course, a legitimate sender is also interested in informa-
tion about the delivery process. However, she is interested in
different information compared to the botmaster. In particular,
a legitimate user wants to know whether the delivery of her
emails failed (e.g., due to a typo in the email address). In
such a case, the user wants to correct the mistake and send
the message again. In contrast, a spammer usually sends emails
in batches, and typically does not care about sending an email
again in case of failure.

Nonetheless, there are three main pieces of information
related to server feedback that a rational spammer is interested
in:

1) Whether the delivery failed because the IP address of
the bot is blacklisted.

2) Whether the delivery failed because of specific policies
in place at the receiving end (e.g., greylisting).

3) Whether the delivery failed because the recipient address
does not exist.

In all three cases, the spammer can leverage the information
obtained from the mail server to make his operation more
effective and profitable. In the case of a blacklisted bot,
he can stop sending spam using that IP address, and wait
for it to be whitelisted again after several hours or days.
Empirical evidence suggests that spammers already collect this
information and act accordingly [5]. If the recipient server
replied with an SMTP non-critical error (i.e., the ones used in
greylisting), the spammer can send the email again after some
minutes to comply with the recipient’s policy.

The third case, in which the recipient address does not exist,
is the most interesting, because it implies that the spammer
can permanently remove that email address from his email
lists, and avoid using it during subsequent campaigns. Recent
research suggests that bot feedback is an important part of
a spamming botnet operation. For example, Stone-Gross et
al. [5] showed that about 35% of the email addresses used by
the Cutwail botnet were in fact non-existent. By leveraging
the server feedback received by the bots, a rational botmaster
can get rid of those non-existing addresses, and optimize his
spamming performance significantly.

II. PROVIDING FALSE RESPONSES TO SPAM EMAILS

Based on these insights, we want to study how we can
manipulate the SMTP delivery process of bots to influence
their sending behavior. We want to investigate what would
happen if mail servers started giving erroneous feedback
to bots. In particular, we are interested in the third case
explained in Section I, since influencing the first two pieces
of information has only a limited, short-term impact on a
spammer. However, if we provide false information about the
status of a recipient’s address, this leads to a double bind
for the spammer: on the one hand, if a spammer considers
server feedback, he will remove a valid recipient address from
his email list. Effectively, this leads to a reduced number of
spam emails received at this particular address. On the other
hand, if the spammer does not consider server feedback, this
reduces the effectiveness of his spam campaigns since emails
are sent to non-existent addresses. In the long run, this will
significantly degrade the freshness of his email lists and reduce
the number of successfully sent emails. In the following, we
discuss how we can take advantage of this situation.

As a first step, we need to identify that a given IP address
is in fact a spambot. To this end, a mail server can either use
traditional, IP-based blacklists or use alternative spam detec-
tion techniques. Once we have identified a bot, a mail server

25

can (instead of closing the connection) start sending erroneous
feedback to the bot, which will relay this information to the
Command and Control infrastructure. Specifically, the mail
server could, for example, report that the recipient of that
email does not exist. By doing this, the email server would
lead the botmaster to the lose-lose situation discussed before.
For a rational botmaster, we expect that this technique would
reduce the amount of spam the email address receives.

III. EVALUATION

To investigate the effects of wrong server feedback to bots,
we set up the following experiment. We ran 32 malware
samples from four large spamming botnet families (Cutwail,
Lethic, Grum, and Bagle). We picked these families because
they were responsible for the vast majority of the worldwide
spam at the time of our experiment. We ran the samples in
a controlled environment, and redirected all of their SMTP
activity to an email server under our control. We configured
this server to report that any recipient of the emails the
bots were sending to was non-existent. Furthermore, we also
used firewall rules to limited the outgoing network traffic
and contain unforeseen side-effects of executing the bots in
our environment. To the best of our knowledge, no malicious
traffic left our experimental network.

To assess whether the different botnets stopped sending
emails to those addresses, we leveraged a spamtrap under our
control. A spamtrap is a set of email addresses that do not
belong to real users, and, therefore, collect only spam mails.
To evaluate our approach, we leverage the following idea: if an
email address is successfully removed from an email list used
by a spam campaign, we will not observe the same campaign
targeting that address again. We define as a spam campaign
the set of emails that share the same URL templates in their
links, similar to the work of Xie et al. [7]. While there are more
advanced methods to detect spam campaigns [4], the chosen
approach leads to sufficiently good results for our purposes.

We ran our experiment for 73 days, from June 18 to August
30, 2011. During this period, our mail server replied with
false server feedback for 3,632 destination email addresses
covered by our spamtrap, which were targeted by 29 distinct
spam campaigns. We call the set of campaigns Cf and the
set of email addresses Sf . Of these, five campaigns never
targeted the addresses for which we gave erroneous feedback
again. To estimate the probability Pc that the spammer running
campaign c in Cf actually removed the addresses from his list,
and that our observation is not random, we use the following
formula:

Pc = 1− (1− n
tf−tb

)te−tf ,

where n is the total number of emails received by Sf for c, tf
is the time at which we first gave a negative feedback for an
email address targeted by c, tb is the first email for c which we
ever observed targeting our spam trap, and te is the last email
we observed for c. This formula calculates the probability that,

given a certain number n of emails observed for a certain
campaign c, no email was sent to the email addresses in Sf

after we sent a poisoned feedback for them. We calculate Pc

for the five campaigns mentioned above. For three of them,
the confidence was above 0.99. For the remaining two, we did
not observe enough emails in our spamtrap to be able to make
a final estimate.

To assess the impact we would have had when sending
erroneous feedback for all the addresses in the spamtrap, we
look at how many emails the whole spamtrap received from
the campaigns in Cf . In total, 2,864,474 emails belonged to
campaigns in Cf . Of these, 550,776 belonged to the three
campaigns for which we are confident that our technique
works and reduced the amount of spam emails received at
these addresses. Surprisingly, this accounts for 19% of the
total number of emails received, indicating that this approach
could have impact in practice.

IV. CONCLUSIONS

We presented a novel approach to mitigating spam, based
on manipulating the server feedback. We acknowledge that
these results are preliminary and provide only a first insight
into the large-scale application of server feedback poisoning.
Nevertheless, we are confident that this approach is reasonable
since it leads to a lose-lose situation for the botmaster. We
argue that the uncertainty about server feedback introduced
by our method is beneficial since it reduces the amount of
information a spammer can obtain when sending spam.

We realize that cybercriminals might adapt, and try to detect
poisoned feedback, for example by discarding any response
coming from a server that always reports that email addresses
do not exist. Having cybercriminals adapt is a common prob-
lem in the arms race between researchers and miscreants.
However, discarding any feedback would still affect botmasters
in a negative way, making our approach still effective.

REFERENCES

[1] C. Kanich, N. Weaver, D. McCoy, T. Halvorson, C. Kreibich,
K. Levchenko, V. Paxson, G. Voelker, and S. Savage. Show Me the
Money: Characterizing Spam-advertised Revenue. USENIX Security
Symposium, 2011.

[2] Kaspersky Lab. Spam Report: April 2012. https://www.securelist.com/
en/analysis/204792230/Spam Report April 2012, 2012.

[3] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M. Voelker,
V. Paxson, and S. Savage. On the Spam Campaign Trail. In USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[4] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G. M. Voelker,
V. Paxson, N. Weaver, and S. Savage. botnet Judo: Fighting Spam with
Itself. In Symposium on Network and Distributed System Security (NDSS),
2010.

[5] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The Underground
Economy of Spam: A Botmaster’s Perspective of Coordinating Large-
Scale Spam Campaigns. In USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), 2011.

[6] B. Taylor. Sender reputation in a large webmail service. In Collaboration,
Electronic messaging, Anti-Abuse and Spam Conference (CEAS), 2006.

[7] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov.
Spamming Botnets: Signatures and Characteristics. SIGCOMM Comput.
Commun. Rev., 38, August 2008.

26

Enemy of the State: A State-Aware
Black-Box Web Vulnerability Scanner

Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{adoupe, cavedon, chris, vigna}@cs.ucsb.edu

Abstract—Black-box web vulnerability scanners are a popular
choice for finding security vulnerabilities in web applications.
Unfortunately, black-box tools suffer from a number of limi-
tations, particularly when interacting with complex applications
that have multiple actions that can change the application’s state.

We propose a novel way of inferring the web application’s
internal state machine from the outside—that is, by navigating
through the web application, observing differences in output, and
producing a model representing the web application’s state.

We utilize the inferred state machine to drive a black-box web
application vulnerability scanner.

I. INTRODUCTION

Web applications are the most popular way of delivering
services via the Internet. The complexity of modern web ap-
plications, along with the many different technologies used in
various abstraction layers, are the root cause of vulnerabilities
in web applications.

One method of vulnerability discovery is called black-box
testing, as the application is seen as a sealed machine with
unobservable internals. Black-box approaches are able to per-
form large-scale analysis across a wide range of applications.

Classical black-box web vulnerability scanners crawl a web
application to enumerate all reachable pages and then fuzz the
input data to trigger vulnerabilities. However, this approach
ignores a key aspect of modern web applications: Any request
can change the state of the web application.

In the most general case, the state of the web application is
any data (database, filesystem, time) that the web application
uses to determine its output.

Because a black-box web vulnerability scanner will never
detect a vulnerability on a page that it does not see, scanners
that ignore a web application’s state will only explore and test
a fraction of the web application.

In this paper, we propose to improve the effectiveness
of black-box web vulnerability scanners by increasing their
capability to understand the web application’s internal state.

II. MOTIVATION

Crawling modern web applications means dealing with the
web application’s changing state. Previous work in detecting
workflow violations [1]–[4] focused on navigation, where a
malicious user can access a page that is intended only for
administrators. This unauthorized access is a violation of the
developer’s intended work-flow of the application.

We wish to distinguish a navigation-based view of the web
application, which is simply derived from crawling the web

login.php index.php

view.php

Fig. 1. Navigation graph of a simple web application.

S_0

index.php

S_1login.php

index.php

view.php

Fig. 2. State machine of a simple web application.

application, from the web application’s internal state machine.
To illustrate this important difference, we will use a small
example.

Consider a simple web application that has only three
pages: index.php, login.php, and view.php. The
view.php page is only accessible after the login.php
page is accessed. There is no logout functionality. A client
accessing this web application might make a series of requests:
〈index.php, login.php, index.php, view.php,
index.php, view.php〉

Analyzing this series of requests from a navigation per-
spective creates a navigation graph, shown in Figure 1. This
graph shows which page is accessible from every other page,
based on the navigation trace. However, the navigation graph
does not represent the information that view.php is only
accessible after accessing login.php, or that index.php
has changed after requesting login.php (it includes the link
to view.php).

We are interested in how the requests we make influence
the web application’s internal state machine. The simple web
application described previously has the internal state machine
shown in Figure 2. The web application starts with the internal
state S_0. Arrows from a state show how a request affects
the web application’s internal state machine. In this example,
in the initial state, index.php does not change the state
of the application, however, login.php causes the state
to transition from S_0 to S_1. In the new state S_1, both
index.php and view.php do not change the state of the
web application.

Now the question becomes: “How does knowledge of the
web application’s state machine (or lack thereof) affect a
black-box web vulnerability scanner?” The scanner’s goal is to
find vulnerabilities in the application, and to do so it must fuzz

27

as many execution paths of the server-side code as possible.
Consider the simple application described in Figure 2. In order
to fuzz as many code paths as possible, a black-box web
vulnerability scanner must fuzz the index.php page in both
states S_0 and S_1, since the code execution of index.php
can follow different code paths depending on the current state
(more precisely, in state S_1, index.php includes a link to
view.php, which is not present in S_0).

III. INFERRING THE STATE MACHINE

Inferring a web application’s state machine requires the
ability to detect when the state of the web application has
changed.

The key insight of our state-change algorithm is the fol-
lowing: We detect that the state of the web application has
changed when we make an identical request and get a different
response. This is the only externally visible effect of a state-
change: Providing the same input causes a different output.

Using this insight, our state-change detection algorithm
works as follows: (1) Crawl the web application sequentially,
making requests based on a link in the previous response.
(2) Assume that the state stays the same, because there is no
evidence to the contrary. (3) If we make a request identical to a
previous request and get a different response, then we assume
that some request since the last identical request changed the
state of the web application.

The state-change detection algorithm allows us to infer
when the web application’s state has changed, yet four other
techniques are necessary to infer a state machine.
Clustering similar pages. We want to group together pages
that are similar to detect when a response has changed.

Before we can cluster pages, we model them using the links
present on the page. The intuition here is that the links describe
how the user can interact with the web application. Therefore,
changes to what a user can do (new or missing links) indicate
when the state of the web application has changed.
Determining the state-changing request. The state-change
detection algorithm only says that the state has changed,
however we need to determine which request actually changed
the state. When we detect a state change, we have a temporal
list of requests with identical requests at the start and end.
One of the requests in this list changed the state. We use a
heuristic to determine which request changed the state.
Collapsing similar states. The state-change detection algo-
rithm detects only when the state has changed, however, we
need to understand if we returned to a previous state. This
is necessary because if we detect a state change, we want to
know if this is a state we have previously seen or a brand new
state. We reduce this problem to a graph coloring problem,
where the nodes are the states and an edge between two nodes
means that the states cannot be the same. We add edges to this
graph by using the requests and responses, along with rules
to determine when two states cannot be the same. After the
graph is colored, states that are the same color are collapsed
into the same state.
Navigating. We have two strategies for crawling the web
application.

First, we always try to pick a link in the last response. The
rational behind choosing a link in the last response is that we
emulate a user browsing the web application. In this way, we
are able to handle multi-step processes, such as previewing a
comment before it is committed.

Second, for each state, we make requests that are the least
likely to change the state of the web application. The intuition
here is that we want to first see as much of a state as
possible, without accidentally changing the state, in case the
state change is permanent.

IV. STATE-AWARE FUZZING

After we crawl the web application, our system has inferred,
as much as possible, the web application’s state machine.
We use the state machine information, along with the list of
request–responses made by the crawler, to drive a state-aware
fuzzing of the web application.

To fuzz the application in a state-aware manner, we need
the ability to reset the web application to the initial state (the
state when we started crawling). We do not use this ability
when crawling, only when fuzzing.

Our state-aware fuzzing starts by resetting the web appli-
cation to the initial state. Then we go through the requests
that the crawler made, starting with the initial request. If the
request does not change the state, then we fuzz the request as
a typical black-box scanner. However, if the request is state-
changing, we follow a simple algorithm: We make the request,
and if the state has changed, traverse the inferred state machine
to find a series of requests to transition the web application to
the previous state. If this does not exist, or does not work, then
we reset the web application to the initial state, and make all
the previous requests that the crawler made. This ensures that
the web application is in the proper state before continuing to
fuzz.

V. CONCLUSION

We have described a novel approach to inferring, as much
as possible, a web application’s internal state machine. Using
this approach, our crawler is able to crawl—and thus fuzz—
more of the web application than a classical state-agnostic
crawler. We believe our approach to detecting state change
by differences in output for an identical response is valid
and should be adopted by all black-box tools that wish to
understand a web application’s internal state machine.

REFERENCES

[1] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna, “Multi-module
Vulnerability Analysis of Web-based Applications,” in Proceedings of
the ACM conference on Computer and Communications Security (CCS),
2007, pp. 25–35.

[2] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An
Approach for the Anomaly-based Detection of State Violations in Web
Applications,” in Proceedings of the International Symposium on Recent
Advances in Intrusion Detection (RAID 2007), 2007, pp. 63–86.

[3] X. Li and Y. Xue, “BLOCK: A Black-box Approach for Detection of
State Violation Attacks Towards Web Applications,” in Proceedings of
the Annual Computer Security Applications Conference (ACSAC 2011),
Orlando, FL, December 2011.

[4] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward Auto-
mated Detection of Logic Vulnerabilities in Web Applications,” in Pro-
ceedings of the USENIX Security Symposium, Washington, DC, August
2010.

28

QuadMat: An Efficient and Extensible Sparse
Matrix Structure

Adam Lugowski
Department of Computer Science

University of California, Santa Barbara
alugowski@cs.ucsb.edu

John R. Gilbert
Department of Computer Science

University of California, Santa Barbara
gilbert@cs.ucsb.edu

Abstract—We propose a quaternary tree-based data structure
for sparse matrices, QuadMat. This structure allows more
efficient memory hierarchy usage than existing sparse matrix
structures.

I. INTRODUCTION

Linear algebraic primitives are the basis for a large number
of High-Performance Computing tasks. They constitute the
ground work of many simulation packages, enable efficient
data analysis, and even form the basis of graph algorithms.
The Knowledge Discovery Toolbox (KDT) [3] is a high-
performance graph analysis framework based on linear alge-
braic primitives on sparse structures.

The benefits of linear algebraic primitives over traditional
graph algorithm frameworks boil down to superior memory
utilization and superior parallelism. Traditional algorithms
are data-driven with fine, irregular and unstructured memory
accesses. This means poor locality of reference, unpredictable
communication in a distributed setting, and code dominated by
latency. Linear algebraic primitives, on the other hand, have
fixed communication patterns with operations on matrix blocks
which exploit the memory hierarchy and are dominated by
available bandwidth.

KDT exploits these benefits to build a graph analysis
framework that can scale from laptops to supercomputers
running on thousands of cores. KDT’s graph algorithms are
built on extensible sparse matrix and vector structures using
algorithms such as matrix-matrix and matrix-vector multipli-
cation, element-wise operations, and reductions.

This paper focuses on the sparse matrix structure itself. We
identify weaknesses of existing sparse matrix approaches and
propose a new quaternary-tree based structure called QuadMat
which addresses those weaknesses.

II. CURRENT APPROACHES AND RELATED WORK

At its heart, a sparse matrix A is a set of tuples (i, j, Ai,j).
An unordered set of tuples makes for inefficient algorithms,
so there are many schemes to compress and rearrange these
tuples to improve space complexity, time complexity, and
locality of reference. The most commonly used schemes are
the Compressed Sparse Columns (CSC) and its transpose,
Compressed Sparse Rows (CSR).

CSC groups all tuples in the same column together, then
sorts them by row. There is a single column index for every

m	 rows	

n	 columns	

subdivide	 by	 dimension	
on	 power	 of	 2	 boundaries	

Leaf	 blocks	 store	 a	 limited	
number	 of	 elements	

Fig. 1: A visual representation of a QuadMat quaternary tree
decomposition of a matrix. Each intermediate block has 4 sub-
blocks, and each leaf blocks stores a limited number of matrix
elements. Splits occur on powers of 2 rows/columns.

column, shared by all elements in that column. This approach
makes it trivial to scan down columns of a matrix.

KDT’s backend, the Combinatorial BLAS [1], uses a
Doubly-Compressed Sparse Column (DCSC) sparse matrix
layout. DCSC further compresses CSC’s column index array,
which is advantageous in cases where there are fewer elements
than columns. This frequently happens when a matrix is
decomposed along its dimensions.

Blocking can make subdivision easier, both to exploit the
memory hierarchy and to ease parallelization. Compressed
Sparse Blocks [2] is a dense array of sparse blocks, where
each block’s elements are sorted in Morton Z-Order [5] for
both cache-friendliness and to allow further splitting. CSB
can perform sparse matrix-vector (A × V) and sparse matrix
transpose-vector (AT × V) multiplication in equal time.

Finally [4] shows that even a basic quad-tree matrix imple-
mentation can speed up sparse matrix-matrix multiplication.

A. Motivation

The sparse matrix structures in use today suffer from several
disadvantages:

1) Reads are efficient in one direction (”down the
columns”), but very inefficient in the other (”across the
rows”).

29

×	 =	

row-‐wise	 sort	 column-‐wise	 sort	 column-‐wise	 sort	

Fig. 2: QuadMat’s changeable sort direction allows efficient
reads of both operands and a convenient construction of the
result.

2) Changes to the matrix structure require making a new
copy of the entire matrix.

3) CSC mandates a form of data compression which is es-
sentially run-length encoding. Many more sophisticated
compression schemes are now available.

Read direction is important for operations like reduction and
matrix-matrix or matrix-vector multiplication. The difficulty of
changing the structure of the matrix means that the structure
of the result must be known before it can be filled. These two
constraints result in matrix-matrix multiplication codes that
are run twice (once to find the structure of the answer, again
to fill it in), or use an auxiliary structure which introduces
additional overhead. The final point is important because linear
algebraic primitives are memory-bandwidth bound and better
compression can result in better use of available bandwidth.

III. QUADMAT: BLOCKED TRIPLES STORAGE

Our proposed scheme is a matrix that is recursively sub-
divided into quadrants, by dimension, in a quad-tree fashion
as illustrated by Figure 1. Each leaf node has a minimal and
maximal size. The leaf would present a tuple interface, but
its internal storage can be nearly anything. Each leaf’s sort
direction (along rows, columns, or arbitrary) can be changed
at any time to match the read direction needed. Nodes (internal
or leaf) can be swapped out without affecting the rest of the
structure.

This proposed scheme solves the problems stated above in
the following ways.

A runtime-changeable sort direction allows efficient reads
in any direction, as illustrated by Figure 2. Both operands
are read in a streaming fashion, and the output is written
in a streaming fashion. The sort is local to a leaf block, so
it takes O(k log k) time for a block with k elements. This
means the total structure can be sorted in O(n log k) time,
not O(n log n). Finally, the sort is done lazily and is likely to
be amortized. Note that the output has the same sort direction
as the right operand, meaning that repetitive operations (such
as iterative solvers) will not require a resort in successive
iterations.

Elements can be added to the matrix at runtime by swapping
(small) individual leaf blocks. This does not require a complete
structural rebuild.

A leaf node can store its data in any way it chooses. A
basic (i, j, Ai,j) triples store can be very practical due to the
nature of the quad-tree: each level in the tree implies a bit
of both indices. In other words, depending sparsity, leaves
may store only 16-bit offsets instead of full 32- or 64-bit
indices. Additionally a fully dense node may store elements in
a 2D array with a bitmask specifying empty elements. One can
also envision CSC/CSR leaves, leaves that use ZIP or other
types of modern compression, and even generator leaves that
store nothing but a generation algorithm (useful for regular
structures like an identity or grid matrix). The beauty of this
approach is that multiple leaf types can be mixed together in
the same structure, and even changed at runtime (so a sparse
matrix can become dense, for example).

Block heterogeneity depends on a common interface. Leaf
blocks will need to provide the following operations:

• Iterator(Sort) - provide an iterator that will efficiently
traverse the block in the given direction (rows or columns,
may require a resort of the data)

• Transpose - for a tuple store a trivial constant-time op-
eration that means simply swapping the row and column
array pointers

• Subdivide - present the leaf node as an internal node
backed by the leaf node’s data. Useful to virtually subdi-
vide a large but sparse node to interface with small but
dense nodes.

IV. IMPLEMENTATION

We are in the early stages of an implementation of this
scheme. The project will initially target shared-memory sys-
tems with Intel Threading Building Blocks for parallelism.
QuadMat is intended to become a shared-memory-only back-
end for KDT. It will also provide threading support to the
Combinatorial BLAS to move it from a pure MPI system to
a hybrid one to take better advantage of modern clusters.

REFERENCES

[1] A. Buluç and J.R. Gilbert. The Combinatorial BLAS: Design, implemen-
tation, and applications. The International Journal of High Performance
Computing Applications, 25(4):496–509, 2011.

[2] Aydın Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and
Charles E. Leiserson. Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks. In Proceedings
of the Twenty-First ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Calgary, Canada, August 2009.

[3] Adam Lugowski, David Alber, Aydın Buluç, John R. Gilbert, Steve
Reinhardt, Yun Teng, and Andrew Waranis. A flexible open-source
toolbox for scalable complex graph analysis. In Proceedings of the Twelfth
SIAM International Conference on Data Mining (SDM12), pages 930–
941, April 2012.

[4] Ivan Simecek. Sparse matrix computations using the quadtree storage
format. In Proceedings of the 2009 11th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
’09, pages 168–173, Washington, DC, USA, 2009. IEEE Computer
Society.

[5] David Wise. Ahnentafel indexing into morton-ordered arrays, or matrix
locality for free. In Arndt Bode, Thomas Ludwig, Wolfgang Karl, and
Roland Wismller, editors, Euro-Par 2000 Parallel Processing, volume
1900 of Lecture Notes in Computer Science, pages 774–783. Springer
Berlin / Heidelberg, 2000.

30

Revolver: Detecting Evasion Attacks in Malicious
JavaScript Code

Alexandros Kapravelos∗, Yan Shoshitaisvili∗, Marco Cova†, Christopher Kruegel∗ and Giovanni Vigna∗
∗ UC Santa Barbara

{kapravel,yans,chris,vigna}@cs.ucsb.edu
† University of Birmingham

m.cova@cs.bham.ac.uk

Abstract—In recent years, attacks targeting web clients, in
particular, web browsers and their plugins, have become a
prevalent threat. Attackers deploy web pages that contain exploit
code, typically written in HTML and JavaScript, and use them
to compromise unsuspecting victims.

A number of approaches have been proposed to detect mali-
cious web pages and protect web users. However, these techniques
are not perfect and attackers have found ways to circumvent
them. In particular, attackers routinely tweak their exploit code
to create new variants that evade commonly-used defensive tools.

In this paper, we present Revolver, a novel approach to iden-
tifying evasion attempts in malicious JavaScript code. Revolver
leverages the observation that two scripts that are similar should
be classified in the same way by malware detectors (either both
are malicious or benign); differences in the classification indicate
that one script may contain code designed to evade the detector
tool. Thus, Revolver uses efficient techniques to identify similari-
ties between large numbers of JavaScript programs (despite their
use of obfuscation techniques, such as packing, polymorphism,
and dynamic code generation), and to automatically interpret
their differences.

I. INTRODUCTION

In the last several years, we have seen web-based malware—
malware distributed over the web, exploiting vulnerabilities in
web browser and their plugins—become a prevalent threat. In
a recent report, Microsoft indicated that it detected over 25
million web-based exploits in the first quarter of 2011 alone.
In particular, drive-by-download attacks are the method of
choice for attackers to compromise and take control of victim
machines. At the core of these attacks are pieces of malicious
HTML and JavaScript code that redirect unsuspecting visitors
to rogue web sites and launch browser exploits.

A number of techniques have been recently proposed to
detect the code used in drive-by-download attacks. A common
approach is the use of honeyclients (specially instrumented
browsers) that visit a suspect page and extract a number of
features that can help in determining if this page is benign or
malicious. Such features can be based on static characteristics
of the examined code [1], on specifics of its dynamic behav-
ior [2], or on a combination of static and dynamic features.

Unfortunately, honeyclients are not perfect and attackers
have found ways to evade them [3]. For example, malicious
web pages may be designed to launch an exploit only after they
have verified that the current visitor is a regular user, rather
than an automated detection tool. A web page may check

that the visitor performs some activity, such as moving the
mouse or clicking on links, or that the browser possesses the
idiosyncratic properties of commonly-used modern browsers,
rather than being a simple emulator. If any of these checks
are not satisfied, the malicious web page will refrain from
launching the attack, and, as a consequence, will be incorrectly
classified as benign, thus evading detection.

Two approaches have been recently proposed that can help
mitigating this problem. Proponents of the “multi-faceted”
approach suggest using a combination of different detection
systems to classify web pages, with the assumption that
it is more difficult for an attacker to develop an evasion
technique that works against all the systems. Unfortunately,
setting up and maintaining different systems incurs significant
operational and management cost.

The second approach consists of using “multi-execution
techniques” to explore multiple, alternative paths in the code of
the malicious web page. The assumption in this case is that, by
forcing the execution through alternative branches, the detector
may be able to bypass the evasion checks implemented in
a page and reveal its full behavior. Unfortunately, for this
approach to be feasible, the multi-path execution is limited to
“interesting” control-flow branches, i.e., those that depend on
the value of specific objects (e.g., the navigator.plugins
array that list available plugins). Evasive code that relies on
different, unexpected checking techniques will not trigger the
multi-execution machinery and will thus remain undetected.
In addition, malicious code could repeatedly trigger the multi-
path exploration to make this analysis computationally infea-
sible.

In this paper, we take a different approach to automatically
identify evasion attempts in drive-by-download code. Our
approach, called Revolver, retains the ability of detecting
generic evasion techniques (both known and unknown) with-
out incurring the overhead of multiple detection systems. In
particular, our approach is based on a simple observation:
two scripts that are similar should be classified in the same
way by a drive-by-download detector; that is, they should
both be flagged as benign or both as malicious. Different
detection classifications (all other things being equal) can
be attributed to the differences in the scripts. Since these
differences cause a malicious script to be classified as benign,
they may correspond to implementations of evasion attempts.

31

Notice that this approach requires neither the predetermined
definition of a set of “interesting” code features (as in multi-
execution tools) nor the availability of classification results
from multiple detectors (as in multi-faceted approaches).

In practice, given a piece of JavaScript code, Revolver
efficiently identifies scripts that are similar to that code, and
automatically classifies the differences between two scripts
that it has determined to be similar. In particular, Revolver fo-
cuses first on identifying syntactic-level differences in similar
scripts (e.g., insertion, removal, or substitution of snippets of
code) and then on explaining the semantics of such differences
(their effect on the page execution).

There are several challenges that Revolver needs to address
to apply this approach in practice. First, typical drive-by-
download web pages serve malicious code that is heavily
obfuscated. The code may be mutated from one visit of the
page to another by using simple polymorphic techniques,
e.g., by randomly renaming variables and functions names.
Polymorphism creates a multitude of differences in two pieces
of code. For a superficial analysis, two functionally and struc-
turally identical pieces of code will appear as very different.
In addition, malicious code may be produced on-the-fly, by
dynamically generating and executing new code (through
JavaScript and browser DOM constructs such as the eval()
and setTimeout() functions). Dynamic code generation
poses a problem of coverage, that is, not all JavaScript code
may be readily available to the analyzer. Therefore, a naive
approach that attempts to directly compare two malicious
scripts would be easily thwarted by these obfuscation tech-
niques and would fail to detect their similarities. Instead,
Revolver monitors the execution of JavaScript code in a
web page so that it can analyze both the scripts that are
statically present in the page and those that are dynamically
generated. In addition, to overcome polymorphic mutations
of the code, Revolver performs its similarity matching by
analyzing the Abstract Syntax Tree (AST) of code, thereby
ignoring superficial changes to its source code.

Second, the analysis needs to scale. In fact, in a typical
analysis of a web page, Revolver needs to compare several
JavaScript scripts (more precisely, their ASTs) with a reposi-
tory of millions of ASTs (potential matches) to identify similar
ones. To make this similarity matching computation efficient,
we use a number of machine learning techniques, such as
dimensionality reduction and clustering algorithms.

Finally, not all code changes are security-relevant. For ex-
ample, a change in a portion of the code that is never executed
is less interesting than one that causes a difference in the run-
time behavior of the script. In particular, we are interested
in identifying code changes that cause detection tools to

misclassify a malicious script as benign. To identify such
evasive code changes, Revolver focuses on modifications that
introduce control-flow changes in the program. These changes
may indicate that the modified program checks whether it is
being analyzed by a detector tool (rather than an unsuspecting
visitor) and exhibits a different behavior depending on the
result of this check.

Our main goal with Revolver is to identify code changes
designed to evade drive-by-download detectors: this knowl-
edge can be used to improve detection tools and to increase
their detection rate. We also can leverage Revolver to identify
benign scripts (e.g., well-known libraries) that have been
injected with malicious code, and, thus, display malicious
behavior. Finally, with the use of Revolverwe can demonstrate
several use cases by analyzing differences between similar
pieces of malicious code that can provide interesting insights
into the techniques and methods followed by attackers.

The contributions of our work are the following:
1) Code similarity detection: We introduce techniques

to efficiently identify JavaScript code snippets that are
similar to each other. Our tool is resilient to obfuscation
techniques, such as polymorphism and dynamic code
generation, and also pinpoints the precise differences
(changes in their ASTs) between two different versions
of similar scripts.

2) Detection of evasive code: We automatically classify
differences between two similar scripts to highlight their
purpose and effect on the executed code. In particular, we
discovered several techniques that attackers use to evade
existing detection tools.

II. CONCLUSIONS

In this paper, we have introduced Revolver, a novel approach
and tool for detecting malicious JavaScript code that attempts
to evade detection. Revolver’s approach is based on identifying
scripts that are similar yet are classified differently by mali-
cious code detectors, e.g., a honeyclient. Revolver analyzes
differences in such scripts to isolate evasion attempts.

REFERENCES

[1] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A Fast Filter
for the Large-scale Detection of Malicious Web Pages. In Proceedings
of the International World Wide Web Conference (WWW), 2011.

[2] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-
by-Download Attacks and Malicious JavaScript Code. In Proceedings of
the International World Wide Web Conference (WWW), 2010.

[3] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Escape from Monkey
Island: Evading High-Interaction Honeyclients. In Proceedings of the
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2011.

32

Work-in-Progress: Assembly Code Generation for
Arbitrary Rotations

Daniel Kudrow, Kenny Bier, Oana Theogarajan
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, USA

dkudrow@cs.ucsb.edu

Fred Chong, Diana Franklin
Department of Copmuter Science

University of California, Santa Barbara
Santa Barbara, USA

chong@cs.ucsb.edu, franklin@cs.ucsb.edu

Abstract—Analysis of existing quantum algorithms has re-
vealed a significant need for arbitrary rotations. These rotations
are not always known at compile-time and even when they are,
static compilation can result in a terabyte of generated assembly
code.

We describe a study in which we evaluate the design space
defined by required precision, approximation method, and quan-
tum device technology. The precision required and approximation
method affect the length of the generated code sequence as wellas
the time required to generate the code. The quantum technology
determines the speed at which dynamic code generation must be
accomplished to avoid slowdown. We also evaluate the trade-offs
between static and dynamic code generation.

Index Terms—quantum computing; Solovay-Kitaev;

I. I NTRODUCTION

A quantum computer is a model of computation that utilizes
features of quantum mechanics to manipulate information. The
qubit (quantum bit) is the basic unit of data in a quantum
computer and represents information stored in a quantum
state. The Bloch Sphere of a qubit is a useful visual aid in
understanding this phenomenon.

Fig. 1. A Bloch Sphere for 1 qubit

The state of a qubit is depicted as a point on the surface
of the Sphere. The classical states 1 and 0 are located at the
poles of the Sphere. All other points represent asuperposition

of these two states. Algorithms that exploit this feature ofa
quantum computer have the potential to exponentially increase
their speed becausen qubits represent a superposition of2n

classical states and a quantum computer can act on all of these
states simultaneously.

A. Arbitrary Rotations

The ability to shift the phase of a qubit by an arbitrary angle
has proven to be fundamental to many quantum algorithms.
Shifting the phase of a qubit corresponds to a rotation about
the Z-axis of that qubit’s Bloch Sphere and is accomplished
by applying theRz(θ) quantum gate:

Rz(θ) =
[

e−iθ 0

0 eiθ

]
(1)

.
The difficulty in implementing rotations for arbitrary angles

stems from the fact thatRz(θ) represents a continuous set
of gates (for all possible angles). Fault-tolerant constructions
are generally available only for a small set of gates[1], so
a fault-tolerantRz(θ) must be approximated by a sequence
of gates from such a set. In designing a general purpose
quantum computer it is important to consider how and when
such sequences will be generated to optimize performance.

II. A PPROXIMATION ACCURACY

Accuracy is the most important factor to consider in se-
quence generation. The accuracy of an approximation is the
rotational distance between it and the original gate. This is
formally defined as the projected trace distance between the
two matrices.

A. Existing Algorithms

The accuracy required by an algorithm can be approximated
by examining the number of qubits measured after the appli-
cation of a gate. A measurement on a register ofn qubits
must be accurate to2−n. Rotation errors propagate linearly
so r rotations of accuracyd will generate errorr × d. Thus
the minimum accuracy per gate for succesful execution of the
algorithm isd < 2−n

r .
We studied the algorithms in the IARPA QCS algorithm

suite that include arbitrary rotations to determine what levels
of accuracy were required and detail results below.

33

TABLE I
ROTATIONS IN EXISTING ALGORITHMS

Algorithm Total Rotations Required Precision
Boolean Formula 53,298 2.4e-62
Linear Systems 1,794 1.2e-23
Binary Welded Tree 2,080 2.9e-8
Shortest Vector unknown unknown
Ground State Estimation 2.5e14 9.7e-50

B. Solovay-Kitaev

We have chosen to approximate rotations using the Solovay-
Kitaev algorithm[2] withH,T,H−1, T−1 as our universal set
of gates. The implementation we are using, written in C++ by
Chris Dawson and Michael Neilsen, is limited by the precision
of the system floating point data type. We modified the original
algorithm, written by Chris Dawson and Michael Neilsen to
incorporate arbitrary precision floating point numbers using
the CLN Library for C++. Whereas the original algorithm was
limited to an accuracy of around1×10−11, our altered version
accommodates arbitrarily precise rotations. We demonstrate
our modification in the plot below. We ran Solovay-Kitaev to
a recursion of depth six on the rotationsθ = π

2k
for a range

of k values. It is clear that for values ofk ≥ 30 the original
algorithm is no longer useful.

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 10 20 30 40 50 60 70

A
c
c
u
ra

c
y
 (

tr
a
c
e
 d

is
ta

n
c
e
)

Precision (k)

System 'double'
CLN Library float

Fig. 2. Performance of arbitrary precision Solovay-Kitaev algorithm

III. C OMPILATION TECHNIQUES

Aside from a method for generating sequences, it is im-
portant to consider when this process will occur. There are
advantages to generating sequences both during compilation
as well as at run-time.

A. Compile-Time Sequence Generation

The simplest approach to approximating rotations is to gen-
erate sequences at run-time. The advantage of this approach
is that there is no need to dynamically generate sequences at
run-time for each execution. The cost for arbitrary rotations is
paid once and can then be neglected. The primary drawback
to this approach is the size of the generated code which will
included the full sequence for each rotation. Furthermore this
approach cannot be used on rotations that are not known at
compile-time.

B. Run-Time Sequence Generation

When compiling algorithms in which rotations are not
known at compile-time, sequences will have to be generated
at run-time. The important consideration in this approach is
the time taken to approximate a rotation. The time taken to
generate sequences on the fly will not only increase execution
time but, in the worse case, can allow qubits to decohere, thus
breaking the algorithm.

C. Hybrid Approach

The likeliest implementation of a quantum compiler will
probably combine the above two approaches. One imple-
mentation of this strategy would be to generate a basis of
sequences during compilation, such as rotations ofpi

2k
for

k = 1, 2, ..., n. Then these sequences can be concatenated to
form an approximation of the form

∑p
k=0

pi
2k

with precision
pi
2p .

IV. CONCLUSION

It is clear that arbitrary rotation gates are going to be crucial
to the implementation of a general purpose quantum computer.
As the title indicates, this study is by no means exhaustive.
There remain methods of sequence generation and compilation
strategies that will need to be thoroughly examined.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang,Quantum Computing and Quantum
Information, New York, USA: Cambridge University Press, 2000.

[2] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev Algorithm,
Quantum Computation and Information 0:000-000, 2005.

34

Do you feel lucky? A large-scale analysis of
risk-rewards trade-offs in cyber security

Yan Shoshitaishvili
UC Santa Barbara
yans@cs.ucsb.edu

Adam Doupe
UC Santa Barbara

adoupe@cs.ucsb.edu

Luca Invernizzi
UC Santa Barbara

invernizzi@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

I. ABSTRACT

A cyber-criminal’s profit is determined by the balance of
the risks and rewards of her every action. For example, she
might tune a spamming bot’s email-sending rate to achieve a
good throughput, with an acceptable risk of being detected. A
large-scale study on how cyber-criminals deal with these risk-
reward trade-offs is challenging, as it requires the participation
of many volunteers that are knowledgeable in this field.

Computer security competitions provide a great opportunity
both to educate students and to study realistic cyber-security
scenarios in a controlled environment. Looking to model the
risk-reward trade-offs seen in real cyber-security incidents,
we designed and hosted a novel format for a Capture the
Flag cyber-security contest. The competition, which took place
in December 2011, was the largest educational live security
exercise ever performed, involving 89 teams comprising over
1,000 students across the globe. In this paper, we describe the
intuition, intent, and design of the contest.

II. INTRODUCTION

Computer security incidents commonly display a risk-
reward trade-off. Examples of this in the wild are plentiful:
a spear-phishing campaign might target an increased amount
of users at the cost of an increased risk of being reported, a
backdoored system could send data faster but risk detection
by an IDS, or a bot could spam at a higher frequency and risk
being blacklisted. However, reproducing these scenarios in a
controlled environment is a complicated problem. Continuing
from last-year’s success [?] in generating a dataset from a
cyber-security competition, we designed and organized a new
one on this theme. The competition, which took place at the
end of 2011, saw academic teams from around the world
understanding and adapting to this new scenario.

As computer security becomes an increasingly important
issue for modern corporations and governments, the question
of training the next generation of security professionals rises
in significance. One solution to this, known in the community
as a Capture the Flag (CTF) competition.

A CTF contest is a cyber-warfare exercise consisting of a
set of goals, with the participating teams in competition for
the completion of these goals. Completion of a goal by a
participating team generally results in a reward of points, and
the team with the most points at the end of the competition
wins. Depending on the CTF, the completion of these goals
might require skills in many areas of computer security.

This year, the UCSB iCTF competition was attended by 89
teams, comprising over 1,000 students. All teams were vetted
to ensure that they are academic teams, participating with
the guidance of a faculty member at an accredited university.

These faculty mentors are expected to help ensure ethical
behavior by the participants and to provide a reliable point
of contact during the competition. Of course, we scaled the
difficulty of the challenges of our competition accordingly,
creating challenges for players of all skill levels.

In this paper, we describe the design and implementation
of a novel, large-scale Internet CTF contest, attended by 89
teams from 18 countries, totalling over 1,000 students.

III. COMPETITION STORY

We chose a theme of illegal money laundering for our
competition. This activity is modeled after cyber-criminal
money laundering operations and implements several risk-
rewards trade-offs. Furthermore, a money laundering theme
provides a perfect setting for risk-reward analysis, as the trade-
offs are very intuitively understood.

IV. COMPETITION OVERVIEW

The general idea behind our competition was the conver-
sion (“laundering”) of money, obtained by solving chal-
lenges from the challenge-board, to points by utilizing data
captured from an exploited service of an opponent team.
Successful conversion of money to points depended on a
number of factors, calculated together as the “risk function”.
The factors of the risk function would change every tick.
Each tick lasted two minutes, fast enough to force teams to
automate the choice of services through which they would
launder money.

Several intuitions brought us to the idea for this year’s con-
test. The most important consideration was the development
of a competition to properly model the risk-reward trade-offs
described in Section II. However, an additional consideration
was the assurance of a fair and exciting competition. In many
CTF competitions, one team is able to carry the entire compe-
tition by utilizing experience in a specific field, completely
ignoring whole portions of a competition. We wanted all
aspects of this competition to be important, so we devised
a competition format that would put heavy emphasis on both
team-vs-team competition and on the challenge-board. This
was the reasoning behind implementing the money-to-points
flow of the competition.

In a similar vein, we wanted to prevent a team from
skyrocketing in points and creating an unassailable lead, since
this can have the effect of discouraging other players. We
wanted to promote a format where teams that pulled ahead
had to fight to maintain their position while at the same time
providing a challenge for the other teams trying to catch up.
These motivations helped shape the risk function itself for the
conversion of money into points, and helped us arrive at a
design where money-hoarding was possible.

35

V. COMPETITION DESIGN

Our CTF required a carefully-planned infrastructure, which
was designed and deployed for maximum network perfor-
mance and uptime.

Network To minimize the potential damage from a security
compromise, we created a split network approach, consisting
of three levels of trust (internal, DMZ, and untrusted).

Player VMs A virtual machine, containing the services,
was released in an encrypted state and the encryption key was
released at the start of the competition.

Services A service is a network application, run by the
participants, which carries out some defined functionality but
contains an intended security vulnerability. Each team must
exploit such vulnerabilities in the services of other teams,
while protecting their own services from exploitation.

To check for the availability of these services, we created a
scorebot that would connect to each service and run through
the standard usage scenarios for it. Our scorebot was a program
checked the status of each service at random intervals. The
percentage of time that a team’s service was up was used as a
scaling factor in the risk function for laundering attempts by
that team.

Flags Each service has access to a “flag,” which the attacker
must capture by exploiting the services (hence the name
Capture the Flag). To require teams to continue carrying out
attacks, these flags are regularly updated. This allows the
organizers to track the defensive capabilities of the teams as
they adapt and block existing exploits, and the ability of the
attackers to regain access.

Our scorebot would update each service’s flag as a normal
part of a service’s operation. For example, our scorebot might
act as the user of a messaging service, setting the flag as the
user’s password. To recover the flag, an attacker would have to
compromise the service to the point of being able to recover
user passwords.

Challenges Aside from exploiting services, our competition
required teams to solve challenges (in a form of a file or web
page to analyze) to earn in-game money. Successful analysis
of the challenge would yield the “key” in the form of a string,
and submission of this value into the web form would net
the submitting team an amount of money depending on the
difficulty of the challenge.

Risk The overall risk is the probability that a team’s laun-
dering attempt succeeds. There are four factors that influence
a team’s laundering success: R, the risk of the service; M , the
amount of money the team is trying to launder; N , the total
amount of money the team has laundered through that team;
and Q, the total amount of money the team has laundered
through that service. In this way, we encouraged the teams to
switch the team that they laundered through and to switch the
services that they used to launder.

The factors of the risk function changed every two minutes.
We called the times that these values changed a tick. We
generated these values based on the status of four internal
(not provided to the teams) situational awareness missions.
We used the same representation of these missions as in the
2010 iCTF [?]—petri nets. However, in this competition, the
states of the petri nets influenced the risk values.

Laundering The goal of the CTF was to earn money by
solving challenges and convert it into points by laundering
them through exploited services. When a team exploited a
service, and had some money to convert, they would submit

the captured flag to the submission server and choose an
amount of money to launder. This submission server would
calculate the risk (as described above) and roll a virtual
die to determine if the attempt was successful. If the roll
was successful, the submission server would calculate the
appropriate gain in points by the team involved, and adjust
points accordingly. However, if the laundering failed, the team
would simply lose its money. In either case, the submission
server would mark the exploited teams’ exploited service as
being compromised.

The Scoreboard During a CTF, the scoreboard always
attracts more load than any other part of the infrastructure. For
this reason, we took a very scalable approach to hosting the
scoreboard for our competition. The board was re-generated
once per tick, and contained no server-side dynamic content.
Furthermore, it was deployed on a Eucalyptus [?] cloud, just
in case the servers could not keep up. This turned out to
be necessary, as the load that the scoreboard experienced
necessitated the engagement of every available node in our
cloud.

VI. RESULTS

Our design for the competition proved to be a valid one,
providing intense team-vs-team competition until the very end
of the contest. Statistical analysis of the performance of the
top 10 teams found that the single most important factor in
their placing was their Conversion Ratio, which we defined as
the percentage of money that was successfully converted into
points. The correlation between points and conversion ration
was 0.81, while the correlation between points and the amount
earned was only 0.71. This result was reflected in the fact that
the top team did not have the most earned money by a fairly
wide margin. When analyzing all teams, instead of just the
top 10, however, earned money correlates more strongly with
their points than does conversion ratio.

REFERENCES

[1] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova, M. Egele, and
G. Vigna. Organizing large scale hacking competitions. Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 132–152,
2010.

[2] A. Doupé, M. Egele, B. Caillat, G. Stringhini, G. Yakin, A. Zand,
L. Cavedon, and G. Vigna. Hit’em where it hurts: a live security exercise
on cyber situational awareness. In Proceedings of the 27th Annual
Computer Security Applications Conference, pages 51–61. ACM, 2011.

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov. The eucalyptus open-source cloud-computing system.
In Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM
International Symposium on, pages 124–131. IEEE, 2009.

36

Blacksheep: some dumps are dirtier than others
Antonio Bianchi

UC Santa Barbara
antoniob@cs.ucsb.edu

Yan Shoshitaishvili
UC Santa Barbara
yans@cs.ucsb.edu

Chris Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

Abstract—The lucrative rewards of security penetrations into
large organizations have motivated the development and use of
many sophisticated rootkit techniques to maintain an attacker’s
presence on a compromised system. Due to the evasive nature of
such infections, detecting these rootkit infestations is a problem
facing modern organizations. While many approaches to this
problem have been proposed, various drawbacks that range from
signature generation issues, to coverage, to performance, prevent
these approaches from being ideal solutions.

In this paper, we present Blacksheep, a distributed system for
detecting a rootkit infestation among groups of similar machines.
This approach was motivated by the homogeneous natures of
many corporate networks. Taking advantage of the similarity
amongst the machines that it analyses, Blacksheep is able to
efficiently and effectively detect both existing and new infestations
by comparing the memory dumps collected from each host.

I. INTRODUCTION

Over the past several years, computer security has taken the
center stage, as several high-profile organizations have suffered
costly intrusions. Oftentimes, as in the case of the 2011 RSA
compromise, such intrusions begin as a foothold on a single
infected machine and spread out from that foothold to infect a
larger portion of the enterprise. In the case of the 2010 Stuxnet
attack on Irani nuclear reactors, this infection took the form
of a kernel-based rootkit.

Rootkits are pieces of software designed to stealthily
modify the behavior of an operating system in order to
achieve malicious goals, such as hiding user space objects
(e.g., processes, files, and network connections), logging user
keystrokes, disabling security software, and installing back-
doors for persistent access. Although several detection and
prevention techniques have been developed and deployed, all
have considerable drawbacks, and as a result, rootkits remain
a security threat: According to recent estimates, the percentage
of rootkits among all anti-virus detections is in the range of
7-10% [1], [3].

The goal of our work is to detect kernel rootkits, a broad
class of rootkits that operate by modifying kernel code or
kernel data structures. We focus on the Windows operating
system, since it is both the most widespread and the most tar-
geted platform. However, most of the concepts and techniques
used are applicable to any operating system.

The observation that motivates our approach to the detection
of rootkits is the fact that modern organizations rely on large
networks of computers to accomplish their daily workflows. In
order to simplify maintenance, upgrades, and replacement of
their computers, organizations tend to utilize a standard set of
software and settings for the configuration of these machines.
We believe that by leveraging the similarities between these

computers, malware can be detected with higher accuracy
and without the limitations of modern malware detection
techniques.

Therefore, we propose a novel technique for detecting
kernel rootkits, based on the analysis of physical memory
dumps taken from running operating systems. In our approach,
a set of memory dumps from a population of computers with
identical (or similar) hardware and software configurations
are taken. These dumps are then compared with each other
to find groups of machines that are similar. Finally, these
groups are further analyzed to identify the kernel modifications
introduced by a potential rootkit infection. In particular, we
look for outliers that are different than the rest. Our insight is
that these differences are an indication of a malware infection.

We implemented our approach in a tool, called Blacksheep,
and validated it by analyzing memory dumps taken from two
sets of computers. Blacksheep has several advantages over the
state of the art. First of all, Blacksheep can detect stealthy
rootkit infection techniques, such as data-only modifications
of kernel memory. Additionally, Blacksheep does not need to
be configured to detect specific modifications, because it relies
on the identification of anomalies among a group of similar
hosts. This means that Blacksheep does not use or rely on
signatures, and can detect 0-days as effectively as it can detect
long-known threats.

Since Blacksheep bases its analysis off of a crowd of
similarly-configured machines, the system can be used on
groups of machines in which some instances are already
infected with malware. As long as a viable memory dump
can be obtained, and as long as the majority of the machines
comprising the crowd are not compromised, Blacksheep will
be able to identify infections by comparing the memory dumps
of the involved machines. In contrast, prior tools that utilize
comparative techniques on data from a single machine cannot
be safely deployed onto infected computers, since they would
then have no safe baseline against which to compare.

II. APPROACH

Blacksheep is designed to detect rootkit infestations in
kernel memory. Blacksheep’s design is motivated by the re-
alization that, regardless of how much a rootkit tries to hide
itself, it must still be accessible by the operating system in
order to be executed. This concept is known as the Rootkit
Paradox [2]. Additionally, even if a rootkit manages to hide
its code from the operating system, the data modifications it
makes can still be detected.

Since we are comparing kernel memory snapshots, an
understanding of this memory space is required. The Win-

37

dows kernel consists of many modules, which are PE files
containing kernel code and data. Modules can be operating
system components (e.g., kernel32.dll) or hardware drivers
(e.g., nvstor32.sys), and we use these terms interchangeably.
The module and driver files are loaded into kernel mem-
ory in much the same way as dynamically linked libraries
(DLLs) are loaded into user-space programs, and make up
the functionality of the kernel. Similar to Windows DLLs,
kernel modules contain both code and data segments. These
segments require separate approaches in their comparisons,
and Blacksheep treats them separately.

In summary, Blacksheep performs the following four types
of analyses.
Configuration comparison. Some rootkits come in the form
of a kernel module that is loaded into the system. To identify
such changes, Blacksheep does a “configuration comparison,”
comparing loaded modules between two memory dumps. This
allows the system to detect additional (and potential malicious)
components that are introduced into the kernel.
Code comparison. Most rootkits directly overwrite or aug-
ment existing code in kernel space with malicious content
so that they can perform subversive tasks (such as hiding
resources) when this code is executed. Thus, a difference
in kernel code between machines that should be otherwise
identical can be a good indicator that a rootkit may be present.
However, due to the possibility of benign differences resulting
from, among other causes, code relocation and anti-virus
defense techniques, a detected difference might not necessarily
mean that the machine is infected. Blacksheep can filter out
benign differences and focus on suspicious code differences.
Data comparison. Detecting differences in kernel code alone
is not enough to detect the presence of rootkits with high
accuracy. For example, certain rootkits are able to subvert
system functionality without performing any modifications to
code running on the system, and, instead, they change kernel
data structures to avoid detection through code comparison.
Because of the threat of such rootkits, we compare kernel
data between machines.

Comparing such data between two different machines is a
non-trivial task, and constitutes a large portion of Blacksheep’s
contribution. For statically allocated data segments (i.e., those
segments that are defined in and loaded from the PE file), the
main challenge is handling relocation. However, dynamically
allocated memory provides a more substantial challenge. This
data oftentimes contains many layers of data structures linking
to each other, which must be navigated in order to ensure good
coverage. Blacksheep uses an heuristic approach to detect data
structures. Then, it recursively compares them among memory
dumps, focusing on those differences that can be caused by a
rootkit infection.
Entry point comparison. Additionally, rootkits might subvert
basic interfaces to the Windows kernel in order to carry out
their tasks. This includes the Windows kernel SSDT, driver
IRP communication channels, and certain hardware registers in
the x86 architecture. Blacksheep is able to compare such kernel
entry points by processing the machines’ dumps of physical
memory.

Clustering and detection. After comparing each pair of
memory dumps, Blacksheep places them into a hierarchy of
clusters. The larger clusters are then assumed to contain the
clean dumps, and the smaller clusters are labeled as suspicious.
The assumption is that only a small fraction of the hosts are
infected, and these hosts stand out as outliers when compared
to the other machines in the crowd.

III. EVALUTAION

We evaluated Blacksheep on two sets of memory dumps.
The first was acquired from a set of Windows 7 virtual
machines using QEMU VM introspection, the second set of
memory dumps was acquired using a memory acquisition
driver developed by us. We tested these configurations against
a range of publicly available rootkits. In particular, we used
the well-known Mebroot, Stuxnet, Rustock, and Blackenergy
rootkits, three rootkits in the TDSS family (tdss, tdl3, and
tdl4), and the r2d2 Trojan. Unfortunately, 3 out of 5 rootkits
do not function properly on Windows 7, so the range of tested
rootkits is smaller for the first data set (Windows 7 - QEMU
Introspection).
Windows 7 - QEMU Introspection. We tested Blacksheep
against a set of 40 memory dumps taken through QEMU VM
introspection. Within the set, 20 of the dumps were clean, and
20 were infected with rootkits, with 4 machines infected with
each of 5 rootkits. Blacksheep achieves a true positive rate of
100% and a false positive rate of 0%.
Windows XP - Driver-acquired Memory. Blacksheep was
also tested in detecting rootkits on Windows XP. Again,
10 clean dumps were clustered, this time together with 8
rootkits. Blacksheep produces 75% true positives and 5.5%
false positives.

REFERENCES

[1] A. Kapoor and R. Mathur. Predicting the future of stealth attacks. Virus
Bulletin conference, Oct. 2011.

[2] J. D. Kornblum. Exploiting the rootkit paradox with windows memory
analysis. International Journal of Digital Evidence, 2006.

[3] R. Treit. Some observations on rootkits, Jan. 2010.
http://blogs.technet.com/b/mmpc/archive/2010/01/07/some-observations-
on-rootkits.aspx.

38

Directed Social Queries
Saiph Savage1 Angus Forbes1 Rodrigo Savage2 Norma Elva Chávez2 Tobias Höllerer1

1University of California, Santa Barbara
{saiph@cs, angus.forbes@cs, holl@cs}.ucsb.edu

2Universidad Nacional Autónoma de México
{rodrigosavage@comunidad, norma@fi-b}.unam.mx

Abstract—The friend list of many social network users can
be very large. This creates challenges when users seek to direct
their social interactions to friends that share a particular interest.
We present a self-organizing online tool that by incorporating
ideas from user modeling and data visualization allows a person
to quickly identify which friends best match a social query,
enabling precise and efficient directed social interactions. To
cover the different modalities in which our tool might be used,
we introduce two different interactive visualizations. One view
enables a human-in-the-loop approach for result analysis and
verification, and, in a second view, location, social affiliations and
“personality” data is incorporated, allowing the user to quickly
consider different social and spatial factors when directing social
queries. We report on a qualitative analysis, which indicates that
transparency leads to an increased effectiveness of the system.
This work contributes a novel method for exploring online
friends.

I. INTRODUCTION

“Who knows about a good Windows 6
mobile phone that won’t break the bank?”

Computers Music Pets Cooking

Transparent Interface

Socially Aware Interface

“Mexican Food and Salsa Dancing”

Fig. 1. Screenshot of our two interactive interfaces. Top shows the
transparent interface, with the friends most related to the social query:
“Who knows about a good Windows 6 phone that won’t break the
bank?”. To the right of the highly correlated friends’ names, we see
their associated likes, their meanings and the mapping to the shared
interests. The four shared interests shown, are the ones the system
automatically found for the friends of a particular user. The user can
explore and analyze all the data the system used to recommend that
particular set of friends. The socially aware interface is shown below.
This interface is using spatial and social variables to organize friends
related to the social query: ”Mexican Food and Salsa Dancing”.
In the left side of this interface, the user can analyze particular
characteristics of a specific friend. Our system allows for various
different types of social query formulation; a specific query format
is not required.

An increasing number of individuals regularly use social networks
as a platform from which to pose questions and engage in playful
social interactions. The questions and social interactions are often
directed to a subset of the user’s friends who are potentially helpful
in answering a particular question or who share a particular interest.
While many social network sites already let users define collections of
people in various ways, manually classifying friends into collections
is time consuming, and even if users were to finish this exhaustive
categorization task, the predefined lists might not cover all of the
user’s intended social interactions, especially as social groupings
dynamically shift. For example, a user might be hosting an event
related to a particular theme and seeking to invite only the friends
that are interested in that theme. In this case, the user’s predefined
lists might be too coarse or otherwise inappropriate for this particular
task. Therefore, a system which could automatically find friends
given a user’s social query would be beneficial. Bernstein et.al [2]
addressed this problem, by presenting a system which recommended
the friends a user should share particular web content to. The work
of Amershi et. al [1] presented a system that helped people create
custom, on-demand groups in online social networks. Despite their
novelty, these systems did not offer much transparency to the inner
workings of their approach, and this could impact user experience.
Furthermore, while [1]’s work let the user filter group members based
on particular attributes, their system did not directly allow a user to
target individuals based on a particular social query. Additionally,
both of these studies paid little attention to the overall personality
of each of the user’s friends, which is an attribute that has been
shown to play an important role in online and physical social
interactions [3]. These insights lead us to create a transparent online
tool that effectively matches people to social queries, and also offers
information on particular social and spatial factors related to these
individuals, such as personality traits, and social-spatial affiliations.
Our system has 3 parts: a machine learning part that infers the
interests shared by a user’s friends and finds friends relevant to a
social query, a transparent verification interface, and a socially-aware
interface.

Modeling Shared Interests: A friend’s interests are determined
through his/her Facebook likes. Given that the textual information
describing a like can be very sparse and thus difficult for a machine to
interpret, our system retrieves additional information that can provide
a broader semantic description, and expose the potential meaning
of the like. The additional data is obtained by using the name of
each of the likes as a search phrase in a crowd-sourced knowledge
base (Wikipedia) and collecting all the textual data that relates to
the like. Each friend is then linked to a bag of words representing
likes and their meanings. A user modeling approach similar to that
of [4] is used to find from this data, how related each friend is to
a set of automatically derived “shared interests”, that broadly define
the different tastes of a user’s friends. A “shared interest” is defined
as a set of words that frequently co-occur together in the bag of
words of all of the user’s friends. Figure 1 shows the different “shared
interests” the system discovered for the friends of one particular user.
When the user types a social query, this query is also modeled in
terms of these shared interests, and the K friends who are the most
relevant to the query, are recommended to the user. For visualization

39

purposes K=11 was chosen in this case.
Transparent Verification Interface: This component offers a vi-

sualization of the friends who are most correlated to a particular social
query. It also links and presents the data utilized in recommending
that particular set of friends, thus allowing a user to verify if a
recommendation is indeed appropriate. Figure 1 shows a screenshot
of the interface when the user typed the social query: “Who knows of
a good Windows 6 phone that won’t break the bank?”. We ran a series
of in-depth cognitive walkthroughs with a small number of subjects
to solicit feedback about the basic design as well as to identify
how effective this type of transparency might be for identifying
appropriate friends for directed queries. All of our subjects were
able to navigate the represented information within a few seconds
and only minimal instruction. For the most part, the subjects had
positive responses to the visualization, and noted that it aided them
in verifying and correcting friend lists. As a test case, we included
two friends who were purposefully correlated with shared interests
incorrectly. In order to see if users would notice that some correlations
were incorrect. Without exception, users independently noticed that
something was awry without any indication from the experimentors.
Our motivation in providing this example was to show that even a
simple visualization of the underlying data was sufficient to allow a
subject to confirm or refute a classification. The simple visual cues
in these instances were sufficient to indicate issues with the model
and to cause users to investigate their cause.

Socially-Aware Interface: Although our transparent interface is
effective at weeding out problematic correlations, it does not consider
social contexts or spatial temporal constraints, which are known to
affect a user’s preferences and decisions [5]. We extended our system
to address potential real-world scenarios. To this end, we organize
highly-correlated friends in terms of their geographical location and
their inclusion in particular Facebook groups. Through visualizing
friends in this way, a user can quickly determine which of the users
are appropriate for a particular social query. This is especially true
if the query may only have local relevance. There are also several
different social constraints that can play a role in the user’s desire
to direct a social query to a particular friend. For example, a user
organizing an event to prepare for a competition might not wish to
invite rivals from the other team. We also considered that a friend’s
overall personality might play a role in the user’s desire to include
the friend in the directed social query. A friend’s personality is
determined by calculating the similarity index that the friend’s likes
and their associated textual meaning present with the adjectives from
Thayer’s Activation-Deactivation Adjective Check List [6]. A friend’s
personality is classified as either energetic calm, energetic tense,
tired calm or tired tense. For entertainment purposes, the following
categories were used in our interface: “energetic soul”, “high strung”,
“sleepy soul”, and “anxiously drowsy”.
It is important to note, that the friend features used here were for
showing the potential machine learning and visualization have in
aiding social decisions; they are not exhaustive.

II. CONCLUSION

This paper introduces a novel system for modeling and
recommending social network users based on content and social
factors. To mitigate potential machine learning modeling errors, we
introduce two interactive visualizations that allow for result analysis
and verification. A user study evaluating our system is forthcoming.
We believe our system offers a novel clear fast way for directed
social querying and allows a user to explore and learn about her
friends in a new way.

III. ACKNOWLEDGMENTS

This work was partially supported by CONACYT-UCMEXUS &
NSF grant IIS-1058132. Special thanks to Janet L. Kayfetz for her
motivation.

REFERENCES

[1] Amershi, S., Fogarty, J., Weld, D.S. ReGroup: Interactive Ma-
chine Learning for On-Demand Group Creation in Social Net-
works.Proc. CHI ’12, ACM Press(2012)

[2] Bernstein,M., Marcus,A., Karger, D., Miller R. Enhancing di-
rected content sharing on the web. Proc. CHI ’10, ACM Press
(2010)

[3] Caropreso, E., Chen, S.J. Effects of Personality on Small Group
Communication and Task Engagement, Proc.of World Confer-
ence on E-Learning, AACE (2005)

[4] Dietz,L.,Gamari B.,Guiver J.,Snelson E.,Herbrich E. De-
Layering Social Networks by Shared Tastes of Friendships.
ICWSM The AAAI Press (2012)

[5] Savage,N.S,Baranski, M.,Chavez,N.E.,Hollerer T. I’m feeling
LoCo: A Location Based Context Aware Recommendation
System. Proc. 8th International Symposium on Location-Based
Services, Lecture Notes in Geoinformation and Cartogra-
phy,Springer (2011)

[6] Thayer, R.E., Activation states as assessed by verbal report
and four psychophysiological variables. Psychophysiology 7, 1
(1970), 86-94. (1970)

40

Delay Injection for Service Dependency Detection
Ali Zand∗, Christopher Kruegel∗, Richard Kemmerer∗ and Giovanni Vigna∗

∗Computer Security Lab
University of California Santa Barbara,
Santa Barbara, California 93106-5110

Email(s): {zand,chris,kemm,vigna}@cs.ucsb.edu

Abstract—Detecting dependencies among network services has
been well-studied in previous research. Unfortunately, previous
work suffers from false positives and applicability issues. In this
paper, we provide a new approach for detecting dependencies
among services. We present a traffic watermarking approach
with arbitrarily low false positive and easy applicability.

I. INTRODUCTION

With every day advancement of computer networking tech-
nology, network services have taken more important roles in
every day life. We depend on these network services for many
of our daily needs. As with great role comes great complexity,
these network services are normally implemented as composite
services composed of multiple simpler underlying services,
as a way to manage the complexity. This approach enables
designers to reuse standard underlying services to build com-
plex customized services. For example, a webmail service is
usually implemented using several simple services such as web
service, mail service, DNS service, et cetera. As the services
become more composite and more complex, they need more
protection, as there are more things that can go wrong and
make the whole service to fail. One often needs to know the
components of a composite service to be able to protect it.
Unfortunately, these implementation and dependency details
are often missing or incomplete in current computer networks.

Previous work on service dependency detection can be
divided into active [1] and passive [2] approaches. Passive
approaches generally do not generate any additional traffic
and only observe the existing traffic to find correlated activity.
Active approaches, on the other hand, make their own changes
into the traffic. Passive approaches generally suffer from
higher false positive problem. The reason for this problem
is that correlation does not imply causation. In other words,
when two services are detected as correlated to each other
it does not necessarily mean that they depend on each other
or, even if it does, it does not show which service depends
on the other. Active approaches suffer from applicability
problems, as they introduce more load into the network and
they are usually application dependent. Application dependent
approaches cannot be used for detecting dependencies between
unknown types of services.

To reduce the false positive and tell the difference between
correlation and causation, one needs to control one variable
and observe the other. This is not possible with passive
methods. Therefore, active approaches are needed to recognize

Figure 1. Delayer effect on connections

the direction of the dependency problem. In this paper, we
provide an active watermarking approach that is application
independent.

II. WATERMARKING FOR DEPENDENCY DETECTION

In our approach, we assume that we have access to NetFlow
records, or a similar data source, of the network traffic, and,
we are also able to selectively delay packets.

We use traffic watermarking for detecting the dependency
relations. More specifically, we perturb the timing of the
connections destined to one service and observe whether the
perturbation is propagated to the second service. Our approach
is generic and application-independent, as we do not look into
or change the packet contents. More specifically, to find what
services depend on a given service S1, we delay the first
packet of each connection destined to service S1. We expect
to observe a similar delay in connections destined to services
depending on S1.

III. INDUCED PERTURBATION MODEL

Dependency detection problem can be modeled as follows.
Assume that we want to test the dependency between services
S1 and S2. We have already established that these services
have correlated activity. The goal of the analysis is to de-
termine if any of the two services depend on the other one.
Service S2 depends on service S1 when a failure in service
S1 causes a failure in service S2. Our hypothesis is that if
service S2 depends on service S1, a delay d1 in service S1

should result in a similar delay d2 u d1 in service S2.

A. Detection of the Injected Delay

Assume the following scenario. A connection C1 to service
S1 is delayed. As a result, service S1 will contact service
S2 through connection C2 with a delay. The observer will
see these two connections along with thousands of other
connections and may not be able to map the two connections
C1 and C2.

41

To make the perturbation observable to the observer, we
create different perturbation patterns in different time windows
and this will result in a similar perturbation pattern in the
depending service.

To model the service activity, we divide the time into time
windows of equal size (w1, w2, . . . , w2n, where
|wi| = w). We delay the requests destined to service S1 for td
in odd time windows w1, w3, w5, . . . , w2n−1 and we do not
delay them in even time windows. This process will create
time windows with more than average requests (ti idle time
window) and time windows with less than average requests
(tb busy time window) on S2, as shown in Figure 1. It is
straight-forward to show that ti = tb = td.

Let’s assume that the number of requests for service S2 in
different time windows (td) follows an unknown distribution
D0 = D(µ0, σ0), with mean and standard deviation equal to
µ0 and σ0, respectively. Also, assume that ρ is the fraction of
requests of S2 that are caused by requests of S1. It can be
shown that the number of requests in the idle time windows
and busy time windows follow D1 = D(µ0×(1−ρ), σ0×(1−
ρ)) and D2 = D(µ0 × (1 + ρ), σ0 × (1 + ρ)), respectively. In
other words, this watermarking results in consecutive periods
of length td of distributions D1 and D2 separated from each
other by periods of length w − td of distribution D0.

B. Statistical Inference

In general, we want to disprove that two services are
independent.
X is the random variable for number of requests arriving for
service S2 in each time window of length td, when no delay
is applied.
Xi and Xb are the random variables for number of requests
arriving for service S2 in each ti and tb time windows,
respectively.
µi and µb are the mean of Xi and Xb, respectively.
H0 ≡ µi = µb is the null hypothesis, stating that S2 is
independent of S1, and, as a result, injecting delays in S1

does not change the request arrival distribution in S2.
Similarly, H1 ≡ µi 6= µb.

We compute the z-score of the 2-sample z-test using the
following formula: z = Xb−Xi√

σ2
b
nb

+
σ2
i
ni

We already showed that if service S2 depends on S1, µi =
µ0 × (1 − ρ) and µb = µ0 × (1 + ρ). It can be shown that,
regardless of matter how small ρ is, arbitrarily small p−value
can be obtained given large enough samples. On the other
hand, if the two services are independent, regardless the size
of the sample, small p− value will not be obtained.

C. Paired Wilcoxon Test

In 2-sample z-test, we did not take advantage of the fact that
ti and tb samples are pairwise related. Another alternative is
to use Wilcoxon test to test whether the paired samples of ti
and td are drawn from the same population. In this approach,
we match ti’s to their consecutive tb. In null hypothesis, we

consider ti’s and tb’s as samples of the same population. In
other words, if service S2 does not depend on S1, delaying
requests to service S1 should not create any changes in the
distribution of the requests to S2.

To prove that service S2 depends on service S1, it is
sufficient to show that the number of requests received on
service S2 at ti’s does not follow the same distribution as the
number of requests received at tb’s. Because the ti’s and tb’s
are paired and related, we use Wilcoxon signed-rank test to
calculate the z-score for the null hypothesis (that ti’s and tb’s
belong to the same distribution).

We report service S2 to depend on service S1 if any of the
two statistical tests can reject the null hypothesis.

IV. IMPLEMENTATION

We implemented and tested a demo of the project in a small
lab. We induce the minimum amount of delay that is required
to detect the perturbation. This delay time should be greater
than the clock discrepancy between the delay injector and flow
collector devices. The clock discrepancy in our network is
less than or equal to 40 milliseconds (the computer clocks
are synchronized by NTP, so we used 100 milliseconds as our
delay time). We are aware of the fact, there may exist services
in which 100 milliseconds of delay could cause a failure,
but, these services are usually not implemented in typical
TCP/IP networks and they should have their own dedicated
networks, as small amount of delays/jitters are expected in
regular networks.

In our demo implementation, we were able to show that the
busy and idle time windows (tb and ti’s) are easily detectable.

The delayer is in the process of application in a medium-
size network.

V. CONCLUSIONS

In this paper, we presented a new approach to detect
dependencies among services using traffic watermarking.

REFERENCES

[1] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: A
pervasive network tracing framework. In In NSDI, 2007.

[2] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E. Hutchinson. NSD-
Miner: Automated Discovery of Network Service Dependencies. In In
proceedings of IEEE International Conference on Computer Communi-
cations (INFOCOM ’12), 2012.

42

http://gswc.cs.ucsb.edu

43

