GSWC 2014

Proceedings of

The 9% Annual Graduate Student Workshop on
Computing

October 10th 2014
Santa Barbara, California

http://gswc.cs.ucsb.edu

...ok:;;—"f‘ Y O;’:»»..

..°°. NV ANNN\Y ..'°.
/5] &N
150)
el = == O $

..‘o.. °1 8698° ..o‘...

Department of Computer Science
University of California, Santa Barbara

Organized By

Alexander Pucher, Chair
Vaibhav Arora, Vice-chair
Nevena Golubovi¢, Industry Liaison
Xiaofei Du, Industry Liaison
Cetin Sahin, Financial Coordinator
Hiranya Jayathilaka, Proceedings Coordinator

Stratos Dimopoulos, Website Coordinator

Program Committee

Kevin Borgolte
Victor Fragoso
Yanick Fratantonio
Madhukar Kedlaya
Ana Nika
Divya Sambasivan
Saiph Savage
Paul Schmitt

Morgan Vigil

Google eppfolio
CiTR! X® QUALCOM’

Silver Partners

rrrrrrrrrrrrrr

Keynote Speech
Title
Google Cloud Platform, IoT, and Beyond
Abstract

Ok, so you've got a few billion sensors, a few trillion rows, and no matter how you
try, it just doesn't seem to fit in your spreadsheet. Google is doing this today. Join us
to take a look under the hood at the new tools, methods, and results for folks
pushing the state of the art in [oT in the cloud.

About the Speaker

Miles Ward is a three-time technology startup entrepreneur with a

decade of experience building cloud infrastructures. Miles is Global

Head of Solutions for the Google Cloud Platform; focused on delivering

next-generation solutions to challenges in big data and analytics,

multi-tiered storage, high-availability, and cost optimization. He
@ worked as a core part of the Obama for America 2012 “tech” team,
crashed Twitter a few times, helped NASA stream the Curiosity Mars Rover landing,
and plays electric sousaphone in a funk band.

Panel Discussion

Title
Building an Internet of Things for Humans
Abstract

The Internet of Things (IoT) is expected to connect 50 billion devices to the Internet
by 2020! Sensors and actuators will be everywhere including streets, farmlands,
enterprises, households, cars, and even on our bodies. In this panel discussion we
will try to understand what IoT is, how it affects the software industry, and the
skillset that new computer science graduates should possess to cope with it. We will
also discuss the challenges, opportunities and risks IoT introduces, along with the
new areas of research that it opens up.

Panelists

Luca Foschini is a co-founder and data scientist at The Activity
Exchange, a platform that uses data analytics on people's activities to
incentivize healthy behavior. Luca earned a Ph.D. in Computer
Science from UC Santa Barbara where he developed efficient
algorithms for routing in road networks under heavy traffic
conditions. He also holds a Master in Engineering from the University of Pisa, and is
an alumnus of the Sant'Anna School of Advanced Studies. In a previous life, Luca
accumulated 5 years of industry experience at Ask.com, Google, and the CERN, and
was a coach of the Italian national team participating in the International Olympiad
in Informatics (IOI).

Hagen Green is a Program Manager Lead at Microsoft on the
Windows Shell Experiences team. Previously, he was a Test Lead in
Office on SharePoint. Hagen holds several patents, written several
technical articles, contributed to a book, and authored a book. In his
spare time, Hagen enjoys the great Northwest by cycling, running,
skiing, and backpacking. When he’s not outside, he’s reading,
tinkering with technology, or spending time with his wife Jaime and their 15 month
old son Nolan. Hagen holds a B.S. in Computer Science from UC Santa Barbara.

Christopher Kruegel is the co-founder of Lastline, Inc., where he
currently serves as the Chief Scientist. He is also a Professor in the
Computer Science Department at the UC Santa Barbara. His research
interests are computer and communications security, with an
emphasis on malware analysis and detection, web security, and
\® | intrusion detection. Christopher enjoys to build systems and to make
security tools available to the public. He has published more than 100 conference

and journal papers. Christopher is a recent recipient of the NSF CAREER Award, the
MIT Technology Review TR35 Award for young innovators, an IBM Faculty Award
and several best paper awards. Moreover, he served as an associate editor for
several journals and on program committees of leading computer security
conferences.

Charles Munger is an alumnus of UCSB, having completed the 5 year
BS/MS program in 2013. He is currently a software engineer for
Google, working on frameworks and analysis/build tools for first
party android apps.

Andrew Mutz is Chief Scientist at Appfolio, a Santa Barbara company
focused on creating easy-to-use, web-based software that helps small
and mid-sized businesses more effectively market, manage and grow
their business. Before joining Appfolio, Andrew completed his PhD
in Computer Science at UC Santa Barbara. Prior to his PhD, Andrew
worked as a Software Engineer at Expertcity (now Citrix Online).

- Ashish Thapliyal is a Principal Research Engineer at Citrix. He is
°. ¢ interested in applying Summarization, Text Analytics and Machine
learning to the real world. Previously, he was VP of Engineering at
Lastline, and he has almost a decade of experience designing security
for key Citrix Collaboration products. Before that he was a
Postdoctoral Researcher at the Computer Science Department at UC Berkeley, and a
Student Researcher at IBM T.J. Watson Research Center. His academic research in
Quantum Entanglement and Information Theory produced more than 10 peer-
reviewed publications. He has two patents and 10+ applications pending. Ashish has
an MS in Computer Science, and a PhD in Physics from UCSB.

Peerapol Tinnakornsrisuphap is the systems engineering lead for

Connected Home R&D in Qualcomm Research. His team has

4 , addressed many critical issues facing Internet of Things including

’ low power protocol optimization, security and provisioning, multi-

‘,‘ hop and mesh networking, proximal services discovery, and smart

energy management. He received Ph.D. in Electrical Engineering from University of
Maryland and holds 34 US Patents.

Table of Contents

Session 1: Above the Clouds

GNSS Positioning Improvement and 3D Mapping Using Crowdsources Satellite SNR
Measurements - A. Irish, D. lland,]. Isaacs, E. Belding,]. Hespanha, U. Madhow

A Shared Log Storage for Applications Running on the Cloud - F. Nawab, V. Arora,
D. Agrawal, A. Abbadi

EAGER: API Governance for Modern PaaS$ Clouds - H. Jayathilaka, C. Krintz, R. Wolski

Efficient Sparse Matrix-Matrix Multiplication on Multicore Architectures - A. Lugowski,
J. Gilbert

Session 2: Automated Testing and Verification
Fuzz Testing using Constraint Logic Programming - K. Dewey, J. Roesch, B. Hardekopf
Automated Test Generation from Vulnerability Signatures - A. Aydin, M. Alkhalaf, T. Bultan
Coexecutability: How to Automatically Verify Loops - I. Bocié, T. Bultan

Code-specific, Sensitive, and Configurable Plagiarism Detection - K. Dewey, B. Hardekopf

Session 3: Social Networking and Graph Mining

Analyzing Expert Behaviors in Collaborative Networks - H. Sun, M. Srivatsa, S. Tan, Y. Li,
L. Kaplan, S. Tao, X. Yan

SLQ: A User-friendly Graph Queuing System - S. Yang, Y. Wu, H. Sun, X. Yan

Advocacy Citizen Journalism and their Participatory Audience - S. Savage, A. Monroy-
Hernandez

Posters

Collaborative Interfaces for Designing Optical Fiber Networks - H. Leon, J. Cruz, S. Savage,
N. Chavez, T. Hollerer

Comparing Different Cycle Bases for a Laplacian Solver - E. Boman, K. Deweese, . Gilbert

Assailed: A Story Illustration Algorithm to Generate a Data Structure Connecting Content,
Art and Object - C. Segal,]. McMahan

Towards Real-time Spectrum Monitoring - A. Nika, Z. Zhang, X. Zhou, B. Zhao, H. Zheng

10

12

14

20

22

24

26

28

30

32

34

36

GNSS Positioning Improvement and 3D Mapping Using Crowdsourced
Satellite SNR Measurements

Andrew T. Irish, Daniel Iland, Jason T. Isaacs, Elizabeth M. Belding, Jodo P. Hespanha, and Upamanyu Madhow

Abstract—Geopositioning using Global Navigation Satellite
Systems (GNSS), such as the Global Positioning System (GPS),
is inaccurate in urban environments due to frequent non-line-
of-sight (NLOS) signal reception. This poses a major problem
for mobile services that benefit from accurate urban localiza-
tion, such as navigation, hyperlocal advertising, and geofencing
applications. However, urban NLOS signal reception can be
exploited in two ways. First, one can use satellite signal-to-noise
ratio (SNR) measurements crowdsourced from mobile devices
to create 3D environment maps. Second, in a sort of reverse
process called Shadow Matching, SNR measurements provided
by a particular device at an instant in time can be compared to
3D maps to provide real-time localization improvement. In this
extended abstract we briefly explain how such a system works
and describe a scalable, low-cost, and software-only architecture
that implements it.

I. INTRODUCTION

While many mobile applications require accurate geolo-
calization outdoors, it is an unfortunate fact that in dense
urban environments positioning accuracy using the Global
Positioning System (GPS) degrades significantly, with errors
on the order of tens of meters. The main culprit is that
in large cities the line-of-sight (LOS) to various satellites
becomes occluded by buildings, leading to non-light-of-sight
(NLOS) and multipath signal reception. As a result, the only
satellites useful for trilateration come from a narrow region
in the sky, yielding poor satellite geometries and positioning
accuracy. The underlying geometry problem is not solved
even as additional constellations of Global Navigation Satellite
Systems (GNSS) — such as the Russian GLONASS — become
supported by mobile devices.

One promising method to address this satellite Shadowing
Problem is Shadow Matching (SM). In SM, 3D map databases
can be used to compute the shadows of buildings with respect
to various satellites. Then, low (or high) satellite signal-to-
noise ratio (SNR) measurements can be used to match the
device’s location to areas inside (or outside) various shadows,
thereby reducing uncertainty. Since, for example, any GNSS-
capable Android smartphone or tablet can provide via the
Location Application Programming Interface (API) its esti-
mated position with uncertainty, as well as satellite coordinates
and SNRs, SM can be done entirely in software without any

A.T. Irish, J.T. Isaacs, J.P. Hespanha and U. Madhow are with the Department
of Electrical and Computer Engineering, University of California, Santa
Barbara ({andrewirish, jtisaacs, hespanha, madhow } @ece.ucsb.edu)

D. Iland and E.M. Belding are with the Department of Computer Science,
University of California, Santa Barbara ({iland,ebelding} @cs.ucbs.edu)

Improved
position
estimate

GNSS = S
data

=

Fig. 1. Proposed system architecture.

Prob. 3D 2 Reabtime =)
[N2pRing Positioning <:I

GNSS data

additional infrastructure. A major hurdle to widely deploying
SM, though, is that up-to-date urban 3D maps are not always
available and can be expensive to obtain. Fortunately, as
we elaborate on in [1], [2], large amounts of GNSS data
can be used to create 3D maps. Intuitively, this is done by
assigning many crisscrossing receiver-satellite rays likelihoods
of blockage based on measured SNRs, and then stitching
these rays together into 3D maps. If the data is crowdsourced
from many devices and cloud computing is leveraged, such
maps can be built cheaply and scalably, enabling SM-based
positioning improvement anywhere GNSS data is regularly
collected.

II. SYSTEM OVERVIEW

A schematic of a version of the system we proposed in
our earlier conference paper [3] is shown in Figure 1. In
this system, a Software Development Kit (SDK) is distributed
among many mobile devices which allows for crowdsourcing
of GNSS data. Cloud-based machine learning routines are then
used to process large amounts of this data into probabilistic 3D
maps of the environment; these maps are continually updated
as additional data becomes available. We give a brief overview
of our mapping algorithms in Section III. Once an estimate of
the 3D environment is available in a given area, GNSS data
from a single mobile device can be streamed via the same
SDK to a cloud-based Bayesian filter which performs SM and
transmits revised position estimates to the device in real-time;
we give a summary of the localization filter in Section IV.

As we recently demonstrated in [4], the above system can
be implemented entirely in software at the application level.
One slight variation on it would be to provide the same
functionality as the SDK via a web API. Another would be an
“offline mode” where 3D maps are downloaded to the mobile
device, allowing the SM computation to take place there and
alleviating the need for a reliable network connection. In any
case, efficient crowdsourcing is possible using opportunistic
transmission strategies (e.g., only uploading when the device
is already transmitting) and by using passive listeners (i.e.,
only logging data when the GPS receiver is already active).

Fig. 2. Aerial view of downtown Santa Barbara, with GNSS traces in red
and mapped region outlined in yellow.

III. PROBABILISTIC 3D MAPPING

The considered mapping problem can be described as using
noisy GNSS position and SNR measurements, denoted y and
Z, to estimate a 3D map m. In our previous works [1]-[3] we
proposed several different methods to compute a probabilistic
estimate of the map. A common thread in these papers is that
we employed an Occupancy Grid (OG) environment model,
where the map is partitioned into a 3D grid of cube-shaped
voxels m;, each of which can either be empty (m; = 0) or
occupied (m; = 1). Assuming this representation, a natural
question is then the following: Given all of the measurements,
what is the likelihood that each voxel is occupied (or empty)?
Mathematically, this is equivalent to determining the marginal
posterior distributions, p(m;|y,z), for all i. However, because
the exact paths of the devices x are unknown, to arrive at
solution for the map it turns out one also must estimate
quantities of the form p(x/|y,z), where x] is the position of a
particular device j at time ¢. In the robotics community, this
is referred to as the Simultaneous Localization and Mapping
(SLAM) problem.

The major difference between the works [1]-[3] is that each
strikes a different balance between computational efficiency
and mapping accuracy. In [3] we describe a lightweight
algorithm to recursively estimate the map and device path
given sequential GNSS measurements. However, in that work
(as in virtually all recursive OG mapping techniques), we
rely on cell independence assumptions which, although vastly
simplifying, are known to be incorrect and lead to overcon-
fident results. In [1] we explicitly model the dependencies of
the mapping problem using a Bayesian network, and apply
a scalable version of Loopy Belief Propagation, a graphical
machine learning algorithm, for inference purposes. In that
work, though, we make the simplifying assumption that all
GNSS position fixes are error free, i.e., x =y. In the third paper
[2], we tackle the SLAM problem using a similar but more
complex graphical framework. Example experimental results
of this last approach, leveraging OpenStreetMap (OSM) data
as a-priori information on the first two layers, can be seen
Figures 2 and 3, which show the traces and the generated OG
map for about 25 hours of input data from 4 Android devices
in downtown Santa Barbara.

Fig. 3. Horizontal layers of the generated occupancy map of downtown Santa
Barbara. White/black corresponds to areas identified as empty/occupied, with
shades of grey in between.

Fig. 4. Positioning improvement in downtown Santa Barbara: true path in
yellow, a-GNSS output in red, and corrected (post-SM) path in light blue.

IV. REAL-TIME POSITIONING

Making use of notation previously defined, the localization
problem can be described as follows: Given a stream of noisy
SNR and location data for device j, denoted z/ and y/, along
with a noisy estimate of the map m, what is the best estimate
of the device’s current location x,’ , and how confident are
we in that estimate? Denoting the occupancy probabilities of
the map cells around the device as o’, and treating these as
additional measurements, the quantity we are then interested
in is p(x/|z/,y/,07). In [3] we describe a particle filtering
approach which allows one to apply SM against the occupancy
map in a recursive, real-time fashion, and purely in software
at the mobile application level; in [4] we demonstrated this
approach in real-time. An example result of this technique can
be seen Figure 4, which shows the positioning improvement in
downtown Santa Barbara for a Motorola Moto X smartphone
with cellular assisted GPS+GLONASS (a-GNSS).

REFERENCES

[11 A. T. Irish, J. T. Isaacs, F. Quitin, J. P. Hespanha, and U. Madhow,
“Probabilistic 3D mapping based on GNSS SNR measurements,” in Proc.
of IEEE International Conf. on Acoustics and Signal Processing, 2014.

, “Belief propagation based localization and mapping using sparsely
sampled GNSS SNR measurements,” in Proc. of the International Conf.
on Robotics and Automation, 2014.

[3] J. T. Isaacs, A. T. Irish, F. Quitin, U. Madhow, and J. P. Hespanha,

“Bayesian localization and mapping using GNSS SNR measurements,”

in Proc. of IEEE Position Location and Navigation Symp., 2014.

A. TIrish, J. Isaacs, D. Iland, J. Hespanha, E. Belding, and U. Madhow,

“Demo: ShadowMaps, the Urban Phone Tracking System,” in Proc. of

ACM International Conf. on Mobile Computing and Networking, 2014.

(2]

[4

finar

A Shared Log Storage for Applications Running on
the Cloud

Faisal Nawab Vaibhav Arora

Divyakant Agrawal

Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara, Santa Barbara, CA 93106
{nawab,vaibhavarora,agrawal,amr} @cs.ucsb.edu

Abstract—Web applications are facing unprecedented demand
with users issuing millions of requests per second. The developer
needs to scale the application to this demand while providing
fault-tolerance and availability. This process is error-prone and
need expertise that is not necessarily part of the arsenal of a
web developer. The cloud platform attracted many developers
for its scalability and availability guarantees. Here, we propose
a distributed log store (FLStore) that bridges the gap between
the developer and the cloud. This is done by exposing a simple
interface (i.e., the log) that is scalable, available, and fault-
tolerant. The developer uses a specific API to issue read and
append operations which allows building complex applications
without worrying about answering the question of scalability.
FLStore is designed to be fully distributed to allow the maximum
possible scalability.

Keywords—cloud computing, log, availability, fault-tolerance

I. INTRODUCTION

Developing a web application to support millions of re-
quests per second is an arduous task that requires certain
expertise that is not necessarily acquired by web developers.
This led many developers to adopt the cloud model for
scalability and availability. However, a problem still remains
that the developer needs to orchestrate these resources and
manage them in a way to achieve the desired scalability. This
is not an easy process.

Cloud application reside in datacenters that provide the
cloud infrastructure. These applications are the ones facing the
problem of scalability and trying to achieve it independently.
This process is error-prone and lead to solving the same
problem repeatedly by all applications. Bridging this gap
between the developer and the orchestration of compute and
storage resources is the main problem we are tackling in this

paper.

We envision a common shared data structure that can serve
as a basis for developing web applications. This shared data
structure should be built to be distributed and scalable. It also
needs to provide a simple API that masks the complexities of
achieving a high, scalable performance. A log is an attractive
structure because of its simplicity and familiarity to developers.
Logs were used in a large number of applications ranging from
checkpointing and transaction management to debugging and
auditing.

The use of the log as a common shared data structure
in the cloud has been tackled recently [1]-[3]. The most
notable example is the CORFU shared log [1] that is used
in Tango [2]. The main problem that is faced in a shared log

10

Maintainer,

A Mainéainer ST
Round1 [1 | [Looo] [1001]| J2000] [2001] [3000]
Round 2 [3001] Jaooo] [4001] [5000] [5001] [6000]
Round 3 [6001]] [7000] [7001] [8ooo] [8001] Jo000]

Fig. 1: An example of three deterministic log maintainers with
a batch size of 1000 records. Three rounds of records are
shown.

is that appending to the log must satisfy uniqueness and order
guarantees. Every record must be assigned a unique offset
and the existence of a record with a certain offset leads to
necessarily existing records with smaller offsets. This is a
trivial problem for single-node systems. However, in a shared
log, the participating machines must coordinate together to
ensure that these guarantees are satisfied. Coordination limits
scalability. For a shared log this is specially limiting because
all appends contend to access the same resource, i.e., assigning
an offset that is larger than the head of the log by one. CORFU
proposes the use of a centralized sequencer that will assign log
offsets to clients to be used later when they append. This takes
the sequencer out of the path when the record is appended and
reduces the amount of I/O needed by the centralized unit. This,
however, is still a bottleneck that limits larger web applications.

We propose FLStore to overcome the need of a centralized
entity to append to a shared distributed log. FLStore consists
of log maintainers, where each maintainer is assigned to be a
champion of a subset of the log. By following a deterministic
approach in assigning records, a maintainer can assign an
offset to a record without the need of coordination with other
maintainers. In the rest of this paper, we will detail the design
of FLStore and show how it can scale with added resources.

II. FLSTORE DESIGN, CHALLENGES, AND EVALUATION

The distributed shared log, FLStore, consists of a simple
interface for adding to and reading from the log. It ensures
total order, persistence, and fault-tolerance of records in the
log. It is designed to be fully distributed to overcome the 1/0O
bandwidth constraints that are exhibited in current shared log
protocols.

Design. The FLStore consists of a group of log maintain-
ers. The shared log itself is distributed among the partici-
pating log maintainers. This means that each machine holds

a partial log and is responsible for its persistence and for
answering requests to read its records. This distribution poses
two challenges. The first is the way to append to the log
while guaranteeing uniqueness and the non-existence of gaps
in the log. This includes the access to these records and the
way to index the records. The other challenge is maintaining
explicit order guarantees requested by the log user. We employ
a deterministic approach to make each machine responsible
for specific ranges of the log. These ranges round-robin across
machines where each round consists of a number of records.
we will call this number the batch size. Figure 1 depicts an
example of three log maintainers, A, B, and C. The figure
shows the partial logs of the first three rounds if the batch size
was set to a 1000 records. If an application wants to read a
record it directs the request to the appropriate maintainer.

Adding to the log is done by simply sending a record or
group of records to one of the maintainers. The log maintainer
batches records together until they reach a threshold and
then incorporates them in the set of partial logs. The set of
partial logs is ordered to enable identifying which partial log
contains a requested record. It is possible that a log maintainer
will receive more record appends than others. This creates
a load-balancing problem that can be solved by giving the
application feedback about the rate of incoming requests at
the maintainers.

Log gaps. A maintainer receiving more records also makes
it ahead of others. For example, maintainer A can have 10
partial log batches ready when maintainer B is still at its
5" batch. This causes temporary gaps in the logs that can
be observed by applications reading the log. To overcome
these temporary gaps, simple gossip is propagated between
maintainers. The goal of this gossip is to identify the record
offset that will guarantee that any record with a smaller offset
can be read from the maintainers. We call this offset the
Head of the Log (HL). Each maintainer has a vector with a
size equal to the number of maintainers. Each element in the
vector corresponds to the maximum offset at that maintainer.
Initially the vector is initialized to all zeros. Each maintainer
updates its value in the local vector. Occasionally, a maintainer
propagates its maximum offset to other maintainers. When
the gossip message is received by a maintainer it updates the
corresponding entry in the vector. A maintainer can decide that
the HL value is equal to the vector entry with the smallest
value. When an application wants to read or know the HL,
it asks one of the maintainers for this value. This technique
does not pose a bottleneck for throughput. This is because
it is a fixed-sized gossip that is not dependent on the actual
throughput of the shared log. It might, however, cause the
latency to be higher as the the throughput increases. This is
because of the time required to receive gossips and determine
whether an offset has no prior gaps.

Explicit order requests. Appends translate to a serial order
after they are added by the maintainers. Concurrent appends
therefore do not have precedence relative to each other. It is,
however, possible to enforce order for concurrent appends if
they were requested by the appender. One way is to send
the appends to the same maintainer in the order wanted.
Maintainers ensure that a latter append will have an offset
higher than ones received earlier. Otherwise, it is possible to
enforce order for concurrent appends across maintainers. The

1"

700000

600000

500000

400000

300000

Throughput (Appends/s)

200000

L
100000 : : ‘ : :
1 25 3 35 4

Number of Log Maintainers

4.5 5

Fig. 2: The append throughput of FLStore while increasing the
number of log maintainers.

application waits for the earlier append to be assigned an offset
and then attach this offset as a minimum bound. The maintainer
that received the record with the minimum bound ensures that
the record is buffered until it can be added to a partial log with
offsets larger than the minimum bound. This solution however
must be pursued with care to avoid a large backlog of partial
logs.

Evaluation. FLStore was evaluated on a cluster with the
following specifications: each machine has Intel Xeon E5620
CPUs that are running 64-bit CentOS Linux with OpenJDK
1.7. The nodes in a single rack are connected by a 10GB switch
with an average RTT of 0.15 ms. We show here a single set
of experiments to test the scalability of FLStore. The results
are shown in Figure 2. In it we increase the number of log
maintainers from one to five. A single log maintainer has a
throughput of 131747 record appends per second. As we are
increasing the number of log maintainers a near-linear scaling
is observed. For five log maintainers, the achieved append
throughput is 650815 record appends per second. This append
throughput is 98.8% of the perfect scaling case. This is to be
expected because the shared log design of FLStore removes
any dependencies between maintainers.

III. CONCLUSION

Removing dependencies between maintainers of a shared
log store allows scalability and high performance. FLStore
removes these dependencies and enables applications to in-
teract with the cloud infrastructure through a simple interface
that masks the intricacies of orchestrating compute and storage
resources.

REFERENCES

M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei,
and J. D. Davis. Corfu: A shared log design for flash clusters. In
Proceedings of USENIX Symposium on Networked Systems Design and
Implementation, pages 1-14, 2012.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei,
J. D. Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed data
structures over a shared log. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 325-340. ACM,
2013.

H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi. Logbase: a
scalable log-structured database system in the cloud. Proceedings of the
VLDB Endowment, 5(10):1004-1015, 2012.

(1

(2]

[3]

EAGER: API Governance for Modern PaaS Clouds

Hiranya Jayathilaka, Chandra Krintz, Rich Wolski
Department of Computer Science
Univ. of California, Santa Barbara

Abstract—Recently, there has been a proliferation of web
APIs on the Internet. This makes it difficult to track, control,
and compel reuse of web APIs. To address this challenge, we
investigate a new approach to API governance — combined
policy, implementation, and deployment control of web APIs.
Our approach, called EAGER, provides a software architecture
that can be easily integrated into cloud platforms to support
systemwide, deployment-time enforcement of API governance
policies. Specifically, EAGER can check for and prevent backward
incompatible API changes from being deployed into production
PaaS clouds, enforces service reuse, and facilitates enforcement
of other best practices in software maintenance via policies.

I. INTRODUCTION

The growth of the World Wide Web (WWW), web ser-
vices, and cloud computing have significantly influenced the
way developers implement software applications. Instead of
implementing all the functionality from the scratch, develop-
ers increasingly offload as much application functionality as
possible to remote, web-accessible application programming
interfaces (web APIs) hosted “in the cloud”. As a result, web
APIs are rapidly proliferating. At the time of this writing,
ProgrammableWeb [1], a popular web API index, lists more
than 11,000 web APIs and a nearly 100% annual growth rate.

This proliferation of web APIs demands new techniques
that control and govern the evolution of APIs as a first-
class software resource. A lack of API governance can lead
to security breaches, denial of service (DoS) attacks, poor
code reuse and violation of service-level agreements (SLAs).
Unfortunately, most existing cloud platforms within which web
APIs are hosted provide only minimal governance support.

Toward this end, we propose EAGER (Enforced API
Governance Engine for REST), a model and an architec-
ture that augments existing cloud platforms in order to fa-
cilitate API governance as a cloud-native feature. EAGER
enforces proper versioning of APIs and supports dependency
management and comprehensive policy enforcement at API
deployment-time.

Deployment-time enforcement (heretofore unexplored) is
attractive for several reasons. First, if run-time only API gov-
ernance is implemented, policy violations will go undetected
until the offending APIs are used. By enforcing governance
at deployment-time, EAGER implements “fail fast” in which
violations are detected immediately. Further, the overall system
is prevented from entering a non-compliant state which aids
in the certification of regulatory compliance.

EAGER further enhances software maintainability by guar-
anteeing that developers reuse existing APIs when possible to
create new software artifacts. Concurrently, it tracks changes
made by developers to deployed web APIs to prevent any

12

backwards-incompatible API changes from being put into
production.

EAGER includes a language for specifying API governance
policies. It incorporates a developer-friendly Python program-
ming language syntax for specifying complex policy state-
ments in a simple and intuitive manner. Moreover, we ensure
that specifying the required policies is the only additional
activity that API providers should perform in order to benefit
from EAGER. All other API governance related verification
and enforcement work is carried out by the cloud platform
automatically.

To evaluate the proposed architecture, we implement EA-
GER as an extension to AppScale [2], an open source cloud
platform that emulates Google App Engine. We show that
the EAGER architecture can be easily implemented in extant
clouds with minimal changes to the underlying platform tech-
nology.

In the sections that follow, we present the design and
implementation of EAGER. We then empirically evaluate
EAGER using a wide range of experiments, and conclude.

II. EAGER

Figure 1 illustrates the main components of EAGER (in
blue) and their interactions. Solid arrows represent the inter-
actions that take place during application deployment-time,
before an application has been validated for deployment. Short-
dashed arrows indicate the interactions that take place during
deployment-time, after an application has been successfully
validated. Long-dashed arrows indicate interactions at run-
time.

EAGER is invoked whenever a developer attempts to
deploy an application, using the developer tools available on
his/her workstation. In some cloud implementations these tools
could be available as an online service accessed via a web
browser. In either case, the application deployment request is
intercepted by EAGER API Deployment Coordinator (ADC),
which then performs the required governance checks based
on the metadata stored in the Metadata Manager. Metadata
manager stores application names, versions, dependencies, API
specifications, user profiles and API keys. Governance checks
are driven by a set of administrator-specified policies that are
stored along with the ADC. These policy files are written in
Python, and make use of the following assertion functions:

assert_true (condition, optional_error_msg)
assert_false (condition, optional_error_msg)
assert_app_dependency (app, d_name, d_version)
assert_not_app_dependency (app, d_name, d_version)
assert_app_dependency_in_range (app, name,\

lower, upper, exclude_lower, exclude_upper)

Cloud Platform

Developer's
Application

‘oordinator o
Deployment Tools

|
|
I
|

v

ser _ Depend
o E

Metadata Manager

Fig. 1. EAGER Architecture

If a governance check fails (i.e. assertion failure), EAGER
will preempt the application deployment, and return an error.
Otherwise it proceeds with the application deployment by
activating the deployment mechanisms on the developer’s or
administrator’s behalf.

The API Discovery Portal is a web GUI that enables appli-
cation developers to browse and discover available APIs, and
obtain the necessary API keys. The API Gateway intercepts
API calls at runtime and performs security and rate-limiting
checks.

III. PROTOTYPE IMPLEMENTATION

We implemented a prototype of EAGER by extending
AppScale [2], an open source PaaS cloud that is functionally
equivalent to Google App Engine (GAE). AppScale supports
web applications written in Python, Java, Go and PHP. Our
prototype implements governance for all applications and APIs
hosted in an AppScale cloud.

EAGER Component
Metadata Manager

API Deployment Coordinator
API Discovery Portal

API Gateway

TABLE 1.

Implementation Technology
MySQL (3]

Native Python implementation
‘WSO2 API Manager [4]
‘WSO2 API Manager

IMPLEMENTATION TECHNOLOGIES USED TO IMPLEMENT
THE EAGER PROTOTYPE
Table I lists the key technologies that we use to implement
various EAGER functionalities described in Section II as
services within AppScale itself.

IV. EXPERIMENTAL RESULTS

In this section, we describe our empirical evaluation of
the EAGER prototype and evaluate its overhead and scaling
characteristics. Figure 2 shows that EAGER overhead grows
linearly with the number of APIs exported by an application.
This scaling occurs because the current prototype implemen-
tation iterates through the APIs in the application sequentially.

Next, we analyze EAGER overhead as the number of
dependencies declared in an application grows. For this exper-
iment, we first populate the EAGER Metadata Manager with
metadata for 100 randomly generated APIs. Then we deploy
an application on EAGER which exports a single API and
declares dependencies on the fictitious APIs that are already
stored in the Metadata Manager. We vary the number of
declared dependencies and observe the EAGER overhead.

13

Time Spent on EAGER (s)

0 10 20 30 40 50 60 70 80 %0
No. of APIs in App

100

Fig. 2. EAGER Overhead vs. Number of APIs Exported by the Application
0.9
0.8
= 0.7
g 0.6
§os < = —T p——
%0.4
E 03
0.2
0.1
° o 10 20 30 40 50
No. of Dependencies in App
Fig. 3. EAGER Overhead vs. Number of Dependencies Declared in the
Application

Figure 3 shows the results of these experiments. EAGER
overhead is not significantly influenced by the number of de-
pendencies. In this case, the EAGER implementation processes
all dependency-related information via batch operations. As a
result, the number of web service calls and database queries
that originate due to varying number of dependencies is fairly
constant.

V. CONCLUSIONS

In this paper, we describe EAGER, a model and a software
architecture that facilitates API governance as a cloud-native
feature. EAGER supports comprehensive policy enforcement,
dependency management, and a variety of other deployment-
time API governance features. It promotes many software
development and maintenance best practices including version-
ing, code reuse and retaining API backwards compatibility.

Our empirical results show that EAGER adds negligibly
small overhead to the cloud application deployment process,
and the overhead grows linearly with the number of APIs
deployed. We also show that EAGER scales well to handle
hundreds of dependencies. Our future work considers static
and dynamic analysis that automates detection of API specifi-
cations and dependencies.

REFERENCES

(1]
(2]

“ProgrammableWeb — http://www.programmableweb.com.”

C. Krintz, “The AppScale Cloud Platform: Enabling Portable, Scalable
Web Application Deployment,” IEEE Internet Computing, vol. Mar/Apr,
2013.

“MySQL,” http://www.mysql.com/, [Online; accessed 25-March-2014].
“WSO2 API Manager — http://wso2.com/products/api-manager/.”

[3]
[4]

Efficient Sparse Matrix-Matrix Multiplication on Multicore Architectures®

Adam Lugowski'

Abstract

We
multiplication algorithm

describe a new parallel sparse matrix-matrix

in shared memory using a
quadtree decomposition. Our implementation is nearly as
fast as the best sequential method on one core, and scales

quite well to multiple cores.

1 Introduction

Sparse matrix-matrix multiplication (or SpGEMM) is a
key primitive in some graph algorithms (using various
semirings) [5] and numeric problems such as algebraic
multigrid [9]. Multicore shared memory systems can
solve very large problems [10], or can be part of a
hybrid shared/distributed memory high-performance
architecture.

Two-dimensional decompositions are broadly used
in state-of-the-art methods for both dense [11] and
sparse [1] [2] matrices. Quadtree matrix decompositions
have a long history [8].

We propose a new sparse matrix data structure and
the first highly-parallel sparse matrix-matrix multiplica-
tion algorithm designed specifically for shared memory.

2 Quadtree Representation

Our basic data structure is a 2D quadtree matrix
decomposition. Unlike previous work that continues the
quadtree until elements become leaves, we instead only
divide a block if its nonzero count is above a threshold.
Elements are stored in column-sorted triples form inside
leaf blocks. Quadtree subdivisions occur on powers of 2;
hence, position in the quadtree implies the high-order
bits of row and column indices. This saves memory in
the triples. We do not assume a balanced quadtree.

3 Pair-List Matrix Multiplication Algorithm

The algorithm consists of two phases, a symbolic phase
that generates an execution strategy, and a computa-
tional phase that carries out that strategy. Each phase
is itself a set of parallel tasks. Our algorithm does not
schedule these tasks to threads; rather we use a standard
scheduling framework such as TBB, Cilk, or OpenMP.

3.1 Symbolic Phase We wish to divide computa-
tion of C = A x B into efficiently composed tasks with
sufficient parallelism. The quadtree structure gives a

" *Supported by Contract #618442525-57661 from Intel Corp.
and Contract #8-482526701 from the DOE Office of Science.
tCS Dept., UC Santa Barbara, alugowski@cs.ucsb.edu
£CS Dept., UC Santa Barbara, gilbert@cs.ucsb.edu

14

John R. Gilbert?

X

(0 (-

Figure 1: Computation of a result block using a list of
pairwise block multiplications.

YOR

natural decomposition into tasks, but the resulting tree
of sparse matrix additions is inefficient. Instead we form
a list of additions for every result block, and build the
additions into the multiply step. We let C,,,, represent
a leaf block in C, and pairs the list of pairs of leaf blocks
from A and B whose block inner product is Cyn.

|pairs|
E - Al X Bl
i=

The symbolic phase recursively determines all the
Cown and corresponding pairs.

We begin with Coy,, < C, and pairs < (A, B). If
pairs only consists of leaf blocks, spawn a compute task
with C,n and pairs. If pairs includes both divided
blocks and leaf blocks, we temporarily divide the leaves
until all blocks in pairs are equally divided. This
temporary division lets each computational task operate
on equal-sized blocks; it persists only until the end of
the SpGEMM.

Once the blocks in pairs are divided, we divide
Cown into four children with one quadrant each and
recurse, rephrasing divided C'= A x B using (3.1):

(3.1) Cown

C1 = [(A1,B1), (A2, B3)]
(32) Cy = [(A1732)7 (A27B4)]
Cs = [(As3, B1), (A4, B3)]
Cys = [(As,B2), (A4, By)]

For every pair in pairs, insert two pairs into each
child’s pairs according to the respective line in (3.2).
Each child’s pairs is twice as long as pairs, but totals
only 4 sub-blocks to the parent’s 8.

3.2 Computational Phase This phase consists of
tasks that each compute one block inner product (3.1).
Each task is lock-free because it only reads from the
blocks in pairs and only writes to Cyypn. We extend

Gustavson’s sequential algorithm [4] in Algorithm 1.

Our addition to Gustavson is a mechanism that
combines columns j from all blocks B; in pairs to
present a view of the entire column j from B. We then
compute the inner product of column j and all blocks
A; using a “sparse accumulator”, or SPA. The SPA can
be thought of as a dense auxiliary vector, or hash map,
that efficiently accumulates sparse updates to a single
column of Clyp,.

A and B are accessed differently, so we organize
their column-sorted triples differently. For constant-
time lookup of a particular column ¢ in A, we use a hash
map with a i — (offset,, length;) entry for each non-
empty column i. A CSC-like structure is acceptable, but
requires O(m) space. We iterate over B’s non-empty
columns, so generate a list of (j, offset;, length;). Both
organizers take O(nnz) time to generate. A structure
that merges all B; organizers enables iteration over
logical columns that span all B;.

Algorithm 1 Compute Task’s Multi-Leaf Multiply
Require: C,,,, and pairs
Ensure: Complete C,yn,
for all (A4, By) in pairs do
organize Ap columns with hash map or CSC
organize B columns into list
end for
merge all B organizers into combined_B_org
for all (column j, PairList;) in combined_B_org do
SPA « {}
for all (A, By) in PairList; do
for all non-null £ in column j in By do
accumulate By[k, j] x Ap[:, k] into SPA
end for
end for
copy contents of SPA to Counl:,]
end for

4 Experiments

We implemented our algorithm in TBB [7] and com-
pared it with the fastest serial and parallel codes avail-
able, on a 40-core Intel Nehalem machine. We test by
squaring Kronecker product (RMAT) matrices [6] and
Erdos-Rényi matrices.

Observe from Table 1 that QuadMat only has a
small speed penalty on one core compared to CSparse,
but gains with two or more cores.

5 Conclusion

Our algorithm has excellent performance, and has the
potential to be extended in several ways. Our next
steps include a triple product primitive that does not

15

Table 1: SpGEMM results on E7-8870 @ 2.40GHz - 40
cores over 4 sockets, 256 GB RAM. Note: CombBLAS is
an MPI code that requires a square number of processes.

Squared Matrix R16 ng ER18 ERQO
Each Input nnz | 1.8M | 7.6M | 8.39M | 33.6M
Output nnz | 3656M | 2.96G | 268M | 1.07G
CSparse [3] Ip| 14s | 122s 9s 58s
1p | 154s | 1597s | 64s 248s
CombBLAS [2] 9p| 19s | 155s 8s 34s
36p | 8s 49s 3s 12s
Ip| 19s 150s 13s 111s
2p | 10s 87s 8s 66s
QuadMat 9p| 3s | 21s | 3s 18s
36p | 2s 11s 2s 9s

materialize the entire intermediate product at any one
time, and computing AT x B with similar complexity
to A x B.

References

[1] A. Bulug, J. T. Fineman, M. Frigo, J. R. Gilbert,

and C. E. Leiserson. Parallel sparse matrix-vector

and matrix-transpose-vector multiplication using com-

pressed sparse blocks. In Proc. 21st Symp. on Paral-

lelism in Algorithms and Arch., 2009.

A. Bulug and J.R. Gilbert. The Combinatorial BLAS:

Design, implementation, and applications. Intl. J. High

Perf. Computing Appl., 25(4):496-509, 2011.

T. A Davis. Direct Methods for Sparse Linear Systems.

SIAM, Philadelphia, Sept 2006.

F. G. Gustavson. Two fast algorithms for sparse

matrices: Multiplication and permuted transposition.

ACM Trans. Math. Softw., 4(3):250-269, 1978.

J. Kepner and J. R. Gilbert, editors. Graph Algorithms

in the Language of Linear Algebra. SIAM, 2011.

J. Leskovec, D. Chakrabarti, J. Kleinberg, and

C. Faloutsos. Realistic, mathematically tractable graph

generation and evolution, using Kronecker multiplica-

tion. In Proc. 9th Principles and Practice of Knowledge

Disc. in Databases, pages 133—145, 2005.

[7] C. Pheatt. Intel threading building blocks. J. Comput.
Sci. Coll., 23(4):298-298, April 2008.

[8] H. Samet. The quadtree and related hierarchical data
structures. Computing Surveys, 16(2):187-260, 1984.

[9] Y. Shapira. Matriz-based Multigrid: Theory and Appli-

cations. Springer, 2003.

J. Shun and G. E. Blelloch. Ligra: A lightweight graph

processing framework for shared memory. SIGPLAN

Not., 48(8):135-146, February 2013.

R. A. Van De Geijn and J. Watts. Summa: Scal-

able universal matrix multiplication algorithm. Con-

currency: Practice and Ezxperience, 9(4):255-274, 1997.

[10]

[11]

Fuzz Testing using Constraint Logic Programming

Kyle Dewey

Jared Roesch

Ben Hardekopf

PL Lab, Department of Computer Science, University of California, Santa Barbara
{kyledewey, jroesch, benh}@cs.ucsb.edu

Abstract—Fuzz testing, a technique for automatically gen-
erating programs, is useful to build confidence in compilers
and interpreters. In this domain, it is desirable for fuzzers to
exploit semantic knowledge of the language being tested and to
allow for targeted generation of programs that showcase specific
language features and behaviors. However, the predominant
program generation technique used by most language fuzzers,
stochastic context-free grammars, does not have this property.
We propose the use of constraint logic programming (CLP) for
program generation. Using CLP, testers can write declarative
predicates specifying interesting programs, including syntactic
features and semantic behaviors. We apply CLP to automatically
generate JavaScript and Scala programs that exhibit interesting
properties, including arithmetic overflow, prototype-based inher-
itance, higher-order functions, absence of runtime errors, and
well-typedness. We show that the resulting program generation
is fast and that our ability to generate interesting programs is
much greater than that of stochastic grammars.

I. INTRODUCTION

Language fuzzing, i.e., the automated generation of pro-
grams for testing purposes, is a proven strategy for building
confidence in the correctness of compilers and interpreters. For
example, jsfunfuzz [1] and CSmith [2] have found thou-
sands of bugs in interpreters for JavaScript and in compilers for
C. However, existing language fuzzing techniques are, in gen-
eral, ad-hoc and limited in their scope and their effectiveness.
Most existing fuzzers are based on the generation of programs
belonging to stochastic grammars [3], which are Backus-Naur
Form (BNF) grammars annotated with probabilities of emitting
individual nodes. This approach is problematic for two reasons:
1.) it is decidedly syntax-oriented, making it difficult to express
semantic properties, and 2.) it conflates the search space with
the strategy used to search this space. We elaborate further on
these two points.

The syntax-oriented nature of stochastic grammars makes
it hard to express anything beyond simple syntactic validity.
For example, consider well-typed programs in a statically
typed language. Using only the language grammar, ill-typed
programs can result [4], which prevent testing past the type-
checking phase. Artificially restricting the grammar to emit
well-typed programs (e.g, [3], [5]) is non-trivial, and it pre-
vents whole classes of well-typed programs from being emit-
ted. Generating all well-typed programs requires additional
techniques beyond the grammar (e.g., Csallner et al. [6]),
which are highly problem-specific. A syntax-oriented approach
also inhibits the specification of programs with interesting
behaviors that span multiple syntactic forms. For example,
consider the use of prototype-based inheritance in JavaScript,
which requires the coordination of function declarations, object
updates, the use of new in a specific way. Simply tuning
probabilities is not enough to overcome these issues, since
these expressibility problems go beyond syntax.

16

Additionally, stochastic grammars conflate search space
(the infinite set of syntactically valid programs) with search
strategy (how programs in this set are chosen). Specifically,
stochastic grammars force the tester to choose a random
search strategy, that of choosing programs in a random fashion
according to some probability distribution. While a random
strategy can be effective, it is not always the most effective
strategy [7], and indeed the best strategy can be problem-
specific.

In short, stochastic grammars do not give the language
implementer adequate tools for specifying what sorts of tests
are interesting, making any sort of targeted testing literally
a case of luck. To amend this situation, we propose the use
of constraint logic programming (CLP) [8] for fuzzing. CLP
is strictly more general than traditional stochastic grammars,
allowing for both syntactic and semantic properties to be
specified with relative ease. Additionally, CLP treats the search
technique as an orthogonal concern to the search space, allow-
ing testers to freely choose between different search strategies
as they see fit. To get a better idea of what CLP is and
does, we have provided an example in Section II. We apply
CLP to generating real-world JavaScript and Scala programs
with specific properties in Section III, and compare these to
traditional stochastic grammars in Section IV.

II. EXAMPLE IN CLP

Say we have the following stochastic grammar, where n is
a placeholder for arbitrary integers.

e€ Erp:=neZ)"® | (e +eg)’?

This can be directly translated into CLP like so:

exp (num(N)) :— maybe(0.6),
N #>= INT_MIN, N #=< INT_MAX.
exp (add(E1l, E2)) :— exp(El), exp(E2).

The above code can be used as a generator to create valid
expressions, as with the following query:

:— exp(E), write(E).

With respect to the above code, semantically, the CLP engine
will first try to generate a number (num), which succeeds
with probability 0. 6. In the event of failure, the engine will

backtrack to the add alternative, which conveniently happens
40% of the time (hence no need to specify maybe (0.4)).

As of yet, we have not demonstrated anything that tra-
ditional stochastic grammars cannot do. Let us take a step
beyond this, and start reasoning about expressions that evaluate
to particular values:

eval (num(N), N) :- maybe(0.6),
N #>= INT_MIN, N #=< INT_MAX.

eval (add(E1l, E2), Res) :-—
eval (E1, N1), eval(EZ2,
Res #= N1 + N2.

:— eval(E, 42), write(E).

N2),

The query above generates arbitrary expressions which
evaluate down to 42. Using this same basic strategy of using
the CLP code as a generator, we can encode a variety of
interesting properties. For example, to generate well-typed
expressions, all one needs is a typechecker implemented in
CLP, which can be used in a manner similar to the one above
to generate any and all well-typed programs.

III. APPLICATION TO JAVASCRIPT AND SCALA

JavaScript is a dynamically typed language which has un-
dergone extensive fuzz testing in the past [1], [9]. Using CLP,
we have implemented a fuzzer that uses a simple unsound type
system for reducing the number of runtime errors (js—err),
a fuzzer for generating arithmetic expressions that overflow
into doubles from integers (js—-overflow), a fuzzer for
generating programs that stress prototype-based inheritance
(js—inher), and a fuzzer for stressing the use of the with
construct along with closures (js—-withclo). These fuzzers
employ a mix of complex syntactic forms along with type
information and semantic information.

Scala is a feature-rich statically typed language with a fairly
sophisticated type system. We are particularly interested in
generating well-typed Scala programs. Given the language’s
complexity, we chose to focus on a subset of the language
which exposed many details of the type system, specifically
variables, higher-order functions, classes, methods, method
calls, and conditionals. We implemented a fuzzer which was
simply-typed in this context (scala-base), along with a
more complex fuzzer which handled additional features like
generic types, subtyping, inheritance, and pattern matching
(scala—-full). To the best of our knowledge, this is the
first time fuzzing has been applied to generics and higher-order
functions, neither of which can be handled by the state of the
art on fuzzing well-typed programs (e.g, Csallner et al. [6]).

IV. EVALUATION

Our hypothesis is that stochastic grammars cannot possi-
bly express the more complex language properties described
in Section III, since grammars and probabilities alone are
insufficient to describe these properties. To gather relevant
evidence, we first wrote JavaScript and Scala fuzzers using
the traditional stochastic grammar approach. We used CLP to
implement these traditional fuzzers, which helps demonstrate
that CLP is truly more general. Next, the probabilities of the
traditional stocahstic fuzzers were painstakingly tuned to make
them behave as closely to the specialized fuzzers (described in
Section III) as possible. We then compared the rates at which
the two kinds of fuzzers generated programs of interest. For
example, with scala-base, we are interested in seeing how
many well-typed programs a traditional stochastic fuzzer can
produce within a given unit a time relative to our specialized
CLP fuzzers. The results are presented in Table I.

17

Generator Stochastic CLP CLP / Stochastic Ratio
js—err 9,880 37,759 3.8
js—overflow 123 958 7.8
js—inher 0 126,194 e’}
js-withclo 0.04 125,901 3,147,525
scala-base 56 105,510 1,884
scala-full 0 183,187 0o

TABLE L. NUMBER OF PROGRAMS EXHIBITING PROPERTIES OF

INTEREST GENERATED BY TRADITIONAL STOCHASTIC FUZZERS AND OUR
CLP-BASED FUZZERS, IN PROGRAMS GENERATED PER SECOND.

As shown, our specialized fuzzers always outperform the
traditional stochastic versions, often by a significant margin. In
two separate cases, the stochastic versions could not generate
even a single program that exhibited the property of interest,
demonstrating that even trivial-sounding properties may be
effectively out of range for stochastic techniques.

While data has not been provided regarding complexity or
the number of lines of code (LOC) required for the implemen-
tation of the specialized generators, we have found that these
tend to be surprisingly simple. In the vast majority of cases,
the specialized generator is within 100 LOC of the stochastic
version. In the absolute worst case (js—err), the specialized
generator is around 2x larger than the stochastic version,
which we consider acceptable considering the strong guar-
antees on the programs generated. This leads us to conclude
that our CLP-based technique allows for highly specialized
generation relative to traditional stochastic grammars, without
excessive additional difficulty.

REFERENCES

[11 J. Ruderman, “Introducing jsfunfuzz,” 2007. [Online]. Available:

http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c¢ compilers,” in Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283-294. [Online].
Available: http://doi.acm.org/10.1145/1993498.1993532

W. M. McKeeman, “Differential testing for software.” Digital Technical
Journal, vol. 10, no. 1, pp. 100-107, December 1998.

B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC-FSE
’07. New York, NY, USA: ACM, 2007, pp. 185-194. [Online].
Available: http://doi.acm.org/10.1145/1287624.1287651

V. St-Amour and N. Toronto, “Experience report: applying random
testing to a base type environment,” in Proceedings of the 18th ACM
SIGPLAN international conference on Functional programming, ser.
ICFP ’13. New York, NY, USA: ACM, 2013, pp. 351-356. [Online].
Available: http://doi.acm.org/10.1145/2500365.2500616

C. Csallner and Y. Smaragdakis, “Jcrasher: An automatic robustness
tester for java,” Softw. Pract. Exper, vol. 34, no. 11, pp. 1025-1050,
Sep. 2004. [Online]. Available: http://dx.doi.org/10.1002/spe.602

D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard, “An
evaluation of exhaustive testing for data structures,” MIT Computer
Science and Artificial Intelligence Laboratory Report MIT -LCS-TR-921,
Tech. Rep., 2003.

J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,’
Journal of Logic Programming, vol. 19, pp. 503-581, 1994.

[2]

(3]

(4]

[3]

(6]

(71

(8]

[91 C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in Proceedings of the 2Ist USENIX conference
on Security symposium, ser. Security’l2. Berkeley, CA, USA:
USENIX Association, 2012, pp. 38-38. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2362793.2362831

Automated Test Generation from Vulnerability
Signatures

Abdulbaki Aydin, Muath Alkhalaf, and Tevfik Bultan
Computer Science Department, University of California, Santa Barbara
Email: {baki,muath,bultan} @cs.ucsb.edu

Abstract—Web applications need to validate and sanitize user
inputs in order to avoid attacks such as Cross Site Scripting
(XSS) and SQL Injection. Writing string manipulation code
for input validation and sanitization is an error-prone process
leading to many vulnerabilities in real-world web applications.
Automata-based static string analysis techniques can be used to
automatically compute vulnerability signatures (represented as
automata) that characterize all the inputs that can exploit a
vulnerability. There are several factors that limit the applicability
of static string analysis techniques: 1) undecidability of static
string analysis requires the use of approximations leading to false
positives, 2) static string analysis tools do not handle all string
operations, 3) dynamic nature of the scripting languages makes
static analysis difficult. In this paper, we show that vulnerability
signatures computed for deliberately insecure web applications
(developed for demonstrating different types of vulnerabilities)
can be used to generate test cases for other applications. Given a
vulnerability signature represented as an automaton, we present
algorithms for test case generation based on state, transition, and
path coverage. These automatically generated test cases can be
used to test applications that are not analyzable statically, and to
discover attack strings that demonstrate how the vulnerabilities
can be exploited.

I. INTRODUCTION

Correctness of input validation and sanitization operations
is a crucial problem for web applications. Unfortunately, web
applications are notorious for security vulnerabilities such as
SQL injection and XSS that are due to lack of input validation
and sanitization, or errors in string manipulation operations
used for input validation and sanitization.

We present an automated testing framework that targets
testing of input validation and sanitization operations in web
applications for discovering vulnerabilities [2]. We combine
automated testing techniques with static string analysis tech-
niques for vulnerability analysis. We use static string analy-
sis [1] to obtain an over-approximation of all the input strings
that can be used to exploit a certain type of vulnerability. This
set of strings is called a vulnerability signature, which could
be an infinite set containing arbitrarily long strings.

Using the vulnerability signature automata generated by
analyzing the deliberately insecure web applications, we auto-
matically generate test cases based on three coverage criteria:
state, transition and path coverage. Each test case corresponds
to a string such that, when that string is given as a text field
input to a web application, it may exploit the vulnerability
that is characterized by the given vulnerability signature. Our
automated test generation algorithm minimizes the number of
test cases while achieving the given coverage criteria.

This research is supported in part by NSF grant CNS-1116967. Muath
Alkhalaf is funded in part by the King Saud University.

18

II. AUTOMATED TESTING FRAMEWORK

The high-level flow of our automated testing framework for
input validation and sanitization functions is shown in Figure 1.

A. Automata-based Static String Analysis

Automata-based string analysis is a static program analysis
technique. Given a set of input values represented as automata,
it symbolically executes the program to compute the set of
string values that can reach to each program point. Using a
forward-analysis that propagates input values to sinks (i.e.,
security sensitive functions), we identify the attack strings
that can reach to a given sink. Then, propagating the attack
strings back to user input using backward analysis results in
an automaton that corresponds to the vulnerability signature.

Automata-based static string analysis is challenging due
to several reasons. Due to undecidability of string verification,
string analysis techniques use conservative approximations that
over-approximate the vulnerability signatures. Hence, vulner-
ability signatures may contain strings that do not correspond
to attacks, leading to false positives. Moreover, string analysis
tools only model a subset of available string library functions,
and when an un-modeled library function is encountered, the
function has to be over-approximated to indicate that it can re-
turn all string values, which results in further loss of precision.
Furthermore, forward and backward symbolic execution using
automata can cause exponential blow-up in the size of the
automata when complex string manipulation operations such
as string-replace are used extensively. Finally, dynamic nature
of scripting languages used in web application development
makes static analysis very challenging and applicable to a
restricted set of programs. Due to all these challenges it is not
possible to have a push-button automata-based string analysis
that works for all real-world applications.

Combining static vulnerability analysis techniques with
automated test generation allows us to compensate for the
weaknesses of the static vulnerability analysis techniques. In
our approach static vulnerability analysis is applied to a small
set of programs and the results from this analysis is used
for testing other applications. Hence, programs with features
that make static vulnerability analysis infeasible can still be
checked using automated testing. Moreover, the approxima-
tions that are introduced by static vulnerability analysis that
lead to false positives are eliminated during testing.

B. Generating Vulnerability Signatures

Security researchers have developed applications that are
deliberately insecure to demonstrate typical vulnerabilities.
These applications are sometimes used to teach different pit-
falls to avoid in developing secure applications, and sometimes

Automata-based

Static String Analysis
Vulnerability
Attack Backward signature
patterns Forward analysis for K
analysis for SIS automaton
) o vulnerability
Deliberately vulnerability signature
i b detection 9 i
insecure wel generation
applications

Figure 1. Automated Test Generation from Vulnerability Signatures

they are used as benchmarks for evaluating different vulner-
ability analysis techniques. In our framework we use static
string analysis techniques to analyze deliberately insecure
applications and to compute a characterization of inputs that
can exploit a given type of vulnerability.

In order to generate the vulnerability signature for an
application, we need an attack pattern (specified as a regular
expression) that characterizes a particular vulnerability. An
attack pattern represents the set of attack strings that can
exploit a particular vulnerability if they reach a sink (i.e., a
security sensitive function). Attack patterns for different types
of vulnerabilities are publicly available and can be used for
vulnerability analysis.

Given an attack pattern and a deliberately insecure web
application, we use automata-based static string analysis tech-
niques to generate a vulnerability signature automaton that
characterizes all the inputs for that application that can result
in an exploit for the vulnerability characterized by the given
attack pattern.

C. Automated Test Generation from Vulnerability Signatures

Given a vulnerability signature automaton, any string ac-
cepted by the automaton can be used as a test case. Hence,
any path from the start state of the vulnerability signature
automaton to an accepting state characterizes a string which
can be used as a test case. However, a vulnerability signature
automaton typically accepts an infinite number of strings
since, typically, there are an infinite ways one can exploit a
vulnerability. In order to use vulnerability signature automata
for testing, we need to prune this infinite search space.

The mechanism that allows an automaton to represent
an infinite number of strings is the loops in the automaton.
In order to minimize the number of test cases, we have to
minimize the way the loops are traversed. We do this by
identifying all the strongly-connected components (SCCs) in
an automaton using Tarjan’s strongly connected components
algorithm [3] and then collapsing them to construct a directed
acyclic graph (DAG) that only contains the transitions of the
automaton that are not part of an SCC and represents each
SCC as a single node. Using this DAG structure, we generate
tests based on three criteria: 1) state coverage where the goal
is to cover all states of the automaton (including the ones in
an SCC), 2) transition coverage, where the goal is to cover all
transitions of the automaton (including the ones in an SCC),
3) path coverage, where the goal is to cover all the paths in

19

Automata-based
Test Generation

Test set

identification

construction

for state
coverage

Min-cover
paths
algorithm

ScC
coverage

SCC Test set for
transition

coverage

+ DAG

Depth-first-
traversal + SCC
entry and exit
coverage

Test set
for path
coverage

the DAG that is constructed from the automaton, while also
covering all possible ways to enter and exit from an SCC.

We implement the state and transition coverage using the
min-cover paths algorithm [4] on the DAG representation
followed by a phase that ensures the coverage of the states
and transitions inside the SCC nodes. We implement the path
coverage using depth-first-traversal, where, when an SCC node
is encountered, we ensure that all entry and exit combinations
are covered in the generated test cases.

We use the test strings generated from vulnerability signa-
tures of deliberately insecure web applications to test other ap-
plications. If the applications we test contain sanitization errors
similar to the errors in deliberately insecure web applications
or if they do not use proper sanitization, then the generated test
cases can discover their vulnerabilities without analyzing them
statically. Note that the test inputs generated from vulnerability
signatures can also be used for applications that are statically
analyzable in order to eliminate false positives and construct
exploits (i.e., to generate concrete inputs that demonstrate how
a vulnerability can be exploited).

D. Implementation and Experiments

We implemented this approach and conducted experiments
to evaluate its effectiveness [2]. We generated vulnerability sig-
natures from two deliberately insecure applications, and then
used the automatically generated tests from these vulnerability
signatures to test 5 open source applications. Our experiments
show that our approach generates effective tests for detecting
vulnerabilities. We also observed that tests generated using
path coverage are most effective in detecting vulnerabilities.
Transition coverage generates tests that are almost as effective,
and the number of test cases generated by transition coverage
is smaller (resulting in more efficient testing). Finally, tests
generated using the state coverage criteria are not effective in

detecting vulnerabilities.
REFERENCES

[11 FE Yu, M. Alkhalaf, and T. Bultan, “Generating vulnerability signatures
for string manipulating programs using automata-based forward and

backward symbolic analyses,” in ASE, 2009, pp. 605-609.

A. Aydin, M. Alkhalaf, and T. Bultan, “Automated test generation from
vulnerability signatures,” in ICST, 2014.

(2]
[3] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1, no. 2, pp. 146-160, 1972.

E. Ciurea and L. Ciupal, “Sequential and parallel algorithms for mini-
mum flows,” Journal of Applied Mathematics and Computing, vol. 15,
no. 1-2, pp. 53-75, 2004.

[4]

Coexecutability: How To Automatically Verify Loops

Ivan Bocié, Tevfik Bultan
Department of Computer Science
University of California, Santa Barbara, USA
{bo, bultan} @cs.ucsb.edu

Abstract—Verification of web applications is a very important
problem, and verifying loops is necessary to achieve that goal.
However, loop verification is a long studied and very difficult
problem. We find that interdependence of iterations is a major
cause of this difficulty. We present coexecution - a way to model
a loop that avoids the problem of iteration interdependence. We
introduce the coexecutability condition that implies that coexe-
cution is a correct model. Through experiments, we demonstrate
that coexecution reduces the number of inconclusive verification
results by three times, and in 43% of cases increases performance
of verification by at least an order of magnitude.

Keywords—Verification, Loops
I. INTRODUCTION

Web applications are integral to the functioning of the
modern society. As such, their correctness is of fundamental
importance. In our recent work [3], we focused on automated
verification of data store properties in web applications. For
example, in an online forum application involving Users
and Posts, our approach could be used to automatically
answer questions such as “Does every Post have an associated
User?”. In Ruby on Rails [4], a delete_user action could
be implemented as shown in Figure 1.

class UsersController
def destroy_user
user = User.find params][:user_id]
user.posts.each do |post|
post.destroy
end
user.destroy
end
end

Fig. 1.

Our tool analyzes the actions of a given web application using
automated theorem proving techniques to deduce whether a
given property is preserved by all actions.

Rails Code for User Deletion

Verification of loops is a long studied, difficult and gen-
erally undecidable problem [2], [1], often requiring manual
intervention in form of loop invariants. We found that the
main problem with verification of loops stems from automated
reasoning about of how iterations affect each other. In general,
the sequence of iterations is of an arbitrary length, with any
iteration being potentially affected by all previous iterations.
When reasoning about a loop’s behavior, an automated theorem
prover would enumerate iterations one by one to deduce all
the possible results of a loop, producing increasingly more
complex formulas, and may never terminate.

In this paper we identify a special class of loops for which
modeling iteration interdependence is not necessary. We define
a concept called coexecution, which models loop iteration
executions in a way that avoids iteration inter-dependability.
We define a condition under which coexecution is equivalent to

20

sequential execution. Through experiments, we show that co-
execution significantly improves the viability and performance
of loop verification.

II. FORMALIZATION

For brevity and simplicity, we refer to the elements of
a data store as entities without going into specifics of their
nature. Think of them as objects that represent the database,
associated to one another as defined by the schema. For similar
reasons, we will assume that these entities contain no mutable
data, and can only be created or deleted. Modifications could
be implemented as deletion followed by creation of a similar
entity populated with the updated data.

A data store state is a set of entities that exist in some
point in time, for example, a set of User objects and their
associated Posts. A statement serves to update the state. We
define a statement S as a set of state pairs such that executing
the statement S from state s may result in state s’ if and only
if (s,8’) € S. For example, a statement that creates an entity
e can be defined as a set of state pairs (s,s’) st.e € s, e € ',
andVe' i e#e = (¢ €se e €4).

At a high level a loop is defined as a sequential execution
of k iterations, where k is the size of the set being iterated on.
While all iterations execute the same loop body, in our formal
model, we treat each iteration as a unique statement. Hence,
a loop is modeled as the sequential execution of iteration
statements S7, S9,....S; that migrates state sg to s if and
only if:

ds1,... 861 : (50,81) €S A ~--f\(8k_1,8k) € Si
Our key problem comes from this definition. To describe
possible migrations from sg to sy, the theorem prover needs
to deduce all possible sis that are reachable from sg, then
sos from the s;s etc. The complexity of each subsequent state
increases and, since k can often be any integer, this process
may never terminate.

III. SOLUTION

When we manually investigated loops in web applications,
we found out that, typically, loop iterations do not affect each
other. Therefore, modeling the rules of how iterations affect
each other is not necessary, and is in fact not desirable because
this dependence is the major problem of verification feasibility.
For example, the loop iterations in Figure 1 are not inter-
dependent.

We introduce coexecution, a way to model the composition
of multiple statements that are not inter-dependent. Coexecu-
tion entails identifying the effects of each iteration’s execution
as if this iteration were executed in isolation from all others,
and combining these effects into one major operation that we
can use to model the loop.

To formally express this process, we first need to express
the effects of a statement’s execution. We define a delta of
states s and s’ (denoted as (s’ ©s)) to be a structure (O, Oq)
where O, is the set of entities that exist in s’ but not in s
(created entities), and Oy is the set of entities that exist s but
not in s’ (deleted entities).

Next, we need a way to combine multiple deltas into one
delta that encompasses all of them. We combine deltas 6; =
(Oc1,041) and 02 = (O.2,O42) by using the delta union (U)
operator, defined as d; U d3 = (O¢1 U Op2, Og1 U Oga). Note
that, in general, the same entity may be both in the create and
the delete set of the result of a delta union. We call a delta
conflicting if its delete and create sets are not exclusive.

Finally, we need a way formalize the execution of a delta.
Given a state s and a non-conflicting delta 6 = (O, Oy),
we can apply 6 to s using the operator @: the result of that
operation will be a state that contains all elements of (s U
O.)\Og. The apply delta operation is undefined for conflicting
deltas.

We can finally define coexecution. The coexecution of
statements S7, ... Sy migrates between states s and s iff:

ds1...86:(s,81) € S1 A+ A(s,sK) € SpA
§=s5®(5108)U---U(s,05)

A. The Coexecutability Condition

In general, the result of coexecution of statements is
different from the result of sequential execution. For example,
in sequential execution, a statement may undo some of the
previous statement’s work, or may read the modifications done
by a previous statement and behave differently because of that,
even if never undoing previous work. These possibilities would
not be captured by the coexecution approach, since coexecution
models the execution of all statements in isolation. Therefore,
we need a condition under which sequential execution and
coexecution are equivalent - the coexecutability condition.

It is intuitive that these two models of execution should
be equivalent if no statement reads what another creates or
deletes, and if no statement creates what another has deleted
or vice versa. However, we defined statements as arbitrary
migrations between states, and so the very notion of reading
an entity is undefined.

Intuitively, a statement reads an entity if the statement’s
semantic or intent changes depending on the presence of the
read entity. However, this is a problematic intuition since, for
example, creating or deleting an entity is possible if and only if
that entity does not or does exist, respectfully. That means that
any modification of the data implies reading said data, which is
a very limiting factor. Consider a loop in which every iteration
deletes all data. Coexecution is equivalent to the sequential
execution for this loop, yet if all iterations delete all data they
also read all data, implying that the coexecutability condition
fails. This intuition is too coarse.

We define reading in a more flexible way. Let’s introduce
the concept of a delta cover A of a statement S and a set of
states « as a set of deltas such that all executions of S from
any state in « is expressed by at least one delta from A, and
that applying any delta from A to any state in « is accepted

21

by the statement S. Defined like this, a delta cover exists for
a statement S for these states only if S has a certain semantic
(which is the set of deltas) that is not different between the
given states. In words, it does not differentiate them.

Using the concept of delta covers, we can define what it
means for a statement to read an entity e. A statement reads
an entity e if and only if there exists a pair of states such that
the only difference between them is the existence of e, and
there exists no delta cover of S over these two states.

Let us reconsider the loop that deletes all data in every
iteration, within this new definition of reading. The delete all
statement does not read any entity because there exists a delta
cover over any pair of states as defined above: this delta cover
contains a single delta that has an empty create set, and all
possible entities in the delete set. This makes sense because
a delete all statement is not affected by the existence of any
entity, it always does the same thing. In this loop, because all
iterations delete the same set of entities without undoing or
being guided by other iterations, this loop is coexecutable.

Note that coexecution, while seeming similar to paralleliza-
tion, is fundamentally different. Consider a loop that, on each
iteration, deletes all entities and subsequently creates an entity
in one atomic step. If iterations were parallelized, the end
result of the loop will always have exactly one entity in the
state. If these iterations were coexecuted, the end result will
have as many entities as there were iterations. This loop is
not coexecutable, but it demonstrates the difference between
parallelization and coexecution.

IV. EXPERIMENTS AND CONCLUSION

We measured and compared the performance of verification
on four open source Ruby on Rails applications when using
coexecution vs sequential models of loops. We run our exper-
iments under different heuristics in order to demonstrate that
coexecution is generally easier to automatically reason about.

Our results show that, by using coexecution, the number
of inconclusive results involving loop verification is reduced
more than threefold - from 62% down to 17%. Furthermore,
the performance of verification is largely improved. In 43%
of cases, coexecution yields an improvement of at least an
order of magnitude. In 22% cases, coexecution provided an
improvement of four orders of magnitude.

Our results demonstrate that automated verification of web
application actions is feasible in most cases, even when they
contain loops.

REFERENCES

[1] T. Ball and S. K. Rajamani. The slam toolkit. In Proceedings of the 13th
International Conference on Computer Aided Verification (CAV 2001),
pages 260-264, 2001.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, editors,
Proceedings of the 4th International Symposium on Formal Methods for
Components and Objects (FMCO 2005), volume 4111 of Lecture Notes
in Computer Science, pages 364-387. Springer, 2005.

[3] I. Bocic and T. Bultan. Inductive verification of data model invariants for
web applications. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014), May 2014.

[4] Ruby on Rails, Feb. 2013. http://rubyonrails.org.

Code-Specific, Sensitive, and Configurable
Plagiarism Detection

Kyle Dewey

Ben Hardekopf

PL Lab, Department of Computer Science, University of California, Santa Barbara
{kyledewey, benh} @cs.ucsb.edu

Abstract—There is great incentive to be able to accurately
and automatically detect plagiarism in source code, and there
exist a variety of techniques and tools for performing this task.
That said, many of these are fraught with issues, such as being
designed around plain text instead of source code, being lossy and
fundamentally prone to false negatives, and lacking the ability
to be configured for specific plagiarism-detection tasks. We have
developed simple plagiarism-detection technique which addresses
all these problems, being specific to source code, lossless, and
highly configurable. We apply this technique to developing a
plagiarism detector for Scala code, which has already proven
itself to be useful.

I. INTRODUCTION

Plagiarism of source code is an all too common phe-
nomenon. In instructional settings, plagiarism undermines the
entire learning process, as it allows students to get ahead
without any real learning occurring. As such, there is great
incentive to be able to detect plagiarism, especially in an
automated manner. To this end, a large variety of automated
plagiarism detection methods and tools have already been
proposed with varying success.

While existing tools abound, these are not without their
flaws, especially with respect to source code. Most tools
(e.g., MOSS [1]) are designed around plain text, which has
dramatically different structure than source code. For example,
text-based methods are prone to false negatives with source
code, since they may consider inconsequential changes like
variable renamings to be significant. Conversely, text-based
methods are also prone to false positives with source code,
since they do not understand that common elements like
particular sequences of keywords (e.g., using namespace
std; in C++) are relatively unimportant.

Many tools (e.g., MOSS [1]) also systematically discard
information about their inputs, making these systems inher-
ently lossy and prone to false negatives. Finally, all tools
which we are aware of cannot be specialized for specific
tasks. For example, say a given programming assignment is
heavily based on the use of conditionals (e.g., 1f), and so
many solutions free of plagiarism are likely to have very
repetitive patterns of conditionals. An obvious solution is to
de-emphasize conditionals during plagiarism detection, but no
tool we know of exists which can work with this information.

To address these concerns, we have developed a technique
which is specific to source code, lossless in nature, and highly
configurable. We allow programmers themselves to decide
what is important and by how much via simple abstract
syntax tree (AST) traversals and scoring functions. We have

22

successfully used this technique to detect plagiarism in real
Scala code, which previously had to be checked manually
due to the lack of availability of language-specific plagiarism
detectors.

II. OUR TECHNIQUE

A diagram illustrating our overall technique is presented
in Figure 1. We first parse input programs into an AST
representation. From there, a user-defined function is applied
which converts the AST into a stream of features, where the
features themselves are user-defined. For example, the user
may have prior knowledge that the AST 1 + n is typically
involved in plagiarism whenever the type of n is of double.
With our technique, the user can emit a feature for this pattern
and this pattern only, skipping over the rest of the AST.
Not only does this remove noise (reducing false positives),
it reduces the input size for downstream processing, which
can help speed up detection. As another example, say that for
a particular assignment a handful of functions are provided,
and those provided functions are considered more important
than any other functions. With our technique, the user can
emit individual features just for these functions, and uniformly
use some other feature for all other functions. This allows
the downstream detection to focus in on provided routines,
potentially improving the precision of detection.

Once ASTs are converted to streams of features, the
streams must be compared for similarity. We want this to
be a lossless comparison to avoid false negatives, and so
we apply the Smith-Waterman algorithm [2]. This algorithm,
originally used for comparing biological sequences, is used
to align two sequences and provide a score describing how
good the alignment is. The algorithm guarantees that the
provided alignment is optimal, made possible via dynamic
programming. The algorithm can insert interleaving spaces,
known as gaps, into the sequences, in order to maximize
scores. To demonstrate, an optimal alignment of the strings
“foobar” and “foobazbar” is shown below, where “-” represents

a gap:

foo---bar
f oobazbar

The score for aligning a particular feature or gap with some
other feature or gap is determined via a user-defined scoring
function. Since the scoring function is user-defined, the user
can ultimately adjust exactly how similar one AST node is to
another. For example, the user may consider for and while
to be very similar, and so a comparison of these two nodes

Source Code

Feature
Extractor

Feature
Extractor

Feature Sequences

Smith-VWaterman
Algorithm

Raw Score

Fig. 1. Our technique, from input programs to output scores. The “Feature
Extractor” is provided by the user.

would impart a high score. However, attempting to align very
distinct AST nodes like variable declarations and arithmetic
additions may be met with a low score. Once the alignments
are complete, we use the raw scores as a means of comparing
the similarity of any two ASTSs. If two scores are high and
similar, it is likely that the underlying ASTs are also quite
similar, which can alert a human to look at the code.

III. APPLICATION AND EVALUATION

We have observed that in Scala the AST nodes corre-
sponding to conditionals, match expressions, label definitions,
value definitions, literals, identifiers, case definitions, and
function/method calls tend to be shared between plagiarized
code. As such, we developed a feature extractor which emits
fairly generic features corresponding to these specific nodes.
Additionally, we have observed that reordering functions is a
common strategy to circumvent plagiarism detection. As such,
before any features are emitted, we first sort all functions in the
code by size and then process the ordered results, completely
defeating this counter-detection strategy. We process nodes
according to a BFS traversal, which we believe to be more
difficult to circumvent than a DFS traversal. As for the scoring
function, we found that scoring a direct feature match of 2
and a non-match with -1 was sufficient, though much more
complex scoring mechanisms are possible.

We applied the resulting plagiarism detector to a large batch
of course-related files which had previously been manually
checked for plagiarism, complete with several known instances
of plagiarism. The plagiarism detector correctly flagged all of
the known cases as high-scoring, in addition to marking an ad-
ditional pair of files. Upon further examination, it was revealed
that these additional files were also plagiarized, though it was
obfuscated severely due to reordering, superfluous comments,
and the injection of no-op code. As such, the plagiarism
detector has already proven itself more effective than a visual
scan, and so we have adopted it for our own needs in teaching.

23

IV. RELATED WORK

Winnowing [1] is a lossy, text-based technique employed by
the extremely popular MOSS. While the techique is not spe-
cific is designed for plain text, the proprietary MOSS system
is restricted to plagiarism detection of a few dozen languages,
implying that MOSS goes beyond what is published. The
inability of MOSS to handle Scala is ultimately what motivated
this work.

In Zhang et al. [3], an AST is first converted to a LISP-
like S-expression form, one function at a time. The Smith-
Waterman algorithm [2] is subsequently used to compare the
different S-expressions. Information from running the algo-
rithm regarding common substrings is then gathered, which is,
in turn, fed to a clustering algorithm to ultimately determine
what is flagged. From Zhang et al. alone, it is unclear exactly
how S-expressions are compared, though earlier work shows it
to be a naive approach where the whole expression is always
considered in plaintext [4]. This strategy largely degrades into
a text-based strategy, as the names of different productions
actually becomes significant. Moreover, this prevents any sort
of customized feature extraction, which is a central novelty to
our work. It is also unclear in Zhang et al. as to how functions
are treated, as they are first decribed as separate components
but later implied that they behave within a single unit. This
makes it impossible to compare to our own strategy of sorting
functions by size in our application to Scala. The plagiarism
flagging in Zhang et al. is also quite dissimilar to our own.
We flag results based on raw scores produced by the Smith-
Waterman algorithm [2], whereas Zhang et al. flag based on
a fairly ad-hoc method that looks at the lengths of common
substrings. This makes the flagging method in Zhang et al.
sensitive to short interleaving gaps in the source code, which
would reduce the size of any common substrings. Our flagging
method is far more resistant to the introduction of such short

gaps.

V. CONCLUSIONS AND FUTURE WORK

Our technique is fairly simple to implement, and it allows
for a high degree of configuration. The application of our tech-
nique to Scala has already proven itself to be quite effective,
and we currently use it internally for plagiarism detection. As
for future work, we have a version that works with Prolog
code which we are actively tuning.

REFERENCES

[1] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’03. New York, NY, USA: ACM, 2003, pp. 76-85. [Online].
Available: http://doi.acm.org/10.1145/872757.872770

[2] T. Smith and M. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195 — 197, 1981. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/002228368 1900875

[3] L. ping Zhang and D. sheng Liu, “Ast-based multi-language plagiarism
detection method,” in Software Engineering and Service Science (IC-
SESS), 2013 4th IEEE International Conference on, May 2013, pp. 738—
742.

[4] L. Zhang, D. Liu, Y. Li, and M. Zhong, “Ast-based plagiarism detection
method,” in Internet of Things, ser. Communications in Computer and

Information Science, Y. Wang and X. Zhang, Eds. Springer Berlin
Heidelberg, 2012, vol. 312, pp. 611-618.

Analyzing Expert Behaviors in Collaborative
Networks

Huan Sun*, Mudhakar Srivatsa’, Lance M. Kaplan?, Shulong Tan*, Yang Li*, Shu Taof, Xifeng Yan*
*University of California, Santa Barbara
{huansun, shulongtan, yangli, xyan}@cs.ucsb.edu
fIBM T.J. Watson Research Center
{msrivats,shutao} @us.ibm.com
tus. Army Research Lab
{lance.m.kaplan.civ } @mail.mil

Abstract—Collaborative networks are composed of experts
who cooperate with each other to complete specific tasks, such as
resolving problems reported by customers. A task is posted and
subsequently routed in the network from an expert to another
until being resolved. When an expert cannot solve a task, his
routing decision (i.e., where to transfer a task) is critical since
it can significantly affect the completion time of a task. In this
work, we attempt to deduce the cognitive process of task routing,
and model the decision making of experts as a generative process
where a routing decision is made based on mixed routing patterns.

In particular, we observe an interesting phenomenon that an
expert tends to transfer a task to someone whose knowledge is
neither too similar to nor too different from his own. Based on
this observation, an expertise difference based routing pattern
is developed. We formalize multiple routing patterns by taking
into account both rational and random analysis of tasks, and
present a generative model to combine them. For a held-out set
of tasks, our model not only explains their real routing sequences
very well, but also accurately predicts their completion time.
Under three different quality measures, our method significantly
outperforms all the alternatives with more than 75% accuracy
gain. In practice, with the help of our model, hypotheses on how
to improve a collaborative network can be tested quickly and
reliably, thereby significantly easing performance improvement
of collaborative networks.

I. INTRODUCTION

Collaborative networks are abundant in real life, where
experts collaborate with each other to complete specific tasks.
In service businesses, a service provider often maintains an
expert network where service agents collaboratively solve
problems reported by customers. Bugzilla[1] is a bug tracking
system where software developers jointly fix the reported bugs
in projects. In a classic collaborative network, upon receiving
a task, an expert first tries to solve it; if he fails, the expert
will route the task to another expert. The task is completed
until it reaches an expert who can provide a solution.

Figure 1 shows a sample collaborative network with task
routing examples. Task ¢; starts at expert A and is resolved by
expert D, and task ¢, starts at expert D and is resolved by ex-
pert F'. The sequences A+ B - C —Dand D - F — F
are called routing sequences of task t; and ty respectively.
The number of experts on a routing sequence measures the
completion time of a task. The average completion time of
tasks signifies the efficiency of a collaborative network in
problem solving: the shorter, the more efficient.

24

Fig. 1: A Sample Collaborative Network

When the number of experts in a collaborative network
becomes large, to whom an expert routes a task significantly
affects the completion time of the task. For example, in
Figure 1, task ¢; can be directly routed to the resolver D
from A. In this case the routing decision made by expert A
is critical. Therefore, understanding how an expert makes a
certain routing decision and detecting his routing behavioral
patterns will help us identify the inefficiency of a collaborative
network.

The task resolution problem in collaborative networks
has been studied before. Shao et al.[2] propose a sequence
mining algorithm to improve the efficiency of task resolution
in IT service. Miao et al.[3] develop generative models and
recommend better routing by considering both task routing
sequences and task contents. In [4], Zhang et al. study the
resolution of prediction tasks, which are to obtain probability
assessments for a question of interest. All of these studies
aim at developing automated algorithms that can effectively
speed up a task’s resolution process. However, they largely
ignore human factors in real task routing. Take Figure 1 as an
example. Why does expert A route task ¢ to B instead of D?
Is it because he does not understand ¢; well, thus randomly
distributing it to B, or he believes B has a better chance to
solve it, or B has a better chance to find the right expert to
solve it? Does expert A make more rational decisions than
random decisions? While it is very hard to infer A’s decision
logic based on an individual task, it is possible to infer it by
analyzing many tasks transferred and solved by A, B and D. In
this work, we focus on analyzing real expert networks and try
to understand experts’ decision logic, i.e., what kind of routing
patterns an expert follows when deciding where to route a task.
This understanding will help detect the inefficient spots in a
collaborative network and give guidance to the management
team to provide targeted expert training.

0.2

0.151

0.1

0.05-

Normalized Transfer Frequency

0
Relative Expertise Difference

Fig. 2: Task Transfer Frequency vs. Expertise Difference.

After analyzing thousands of tasks in an IBM service
department, we recognize that in many cases, an expert might
not route a task to the best candidates (in terms of the
possibility to solve the task), especially when the task is far
beyond his expertise. Instead, the task is transferred to an
expert whose speciality is between the current expert and the
best candidates. This routing pattern is clearly indicated by
Figure 2. Figure 2 plots the histogram of expertise difference
W, which is calculated when expert A transfers a task
to B. LEA represents the expertise of A and is automatically
learnt based on A’s task resolution records. It is observed
that an expert tends to transfer a task to some expert whose
expertise is neither too similar to nor too different from his
own. This phenomenon can be explained as follows: An expert
is less likely to transfer a task to another expert whose expertise
is very similar, given that the current expert already fails to
resolve the task. On the other hand, if the expertise of two
experts are very different, they might actually specialize in
quite different domains; therefore, an expert might not be clear
about the other’s speciality and few tasks would be transferred
between them.

Inspired by the above observation, we introduce a routing
pattern describing the general trend of expert A transferring
a task to B, based on the expertise difference between A
and B. Apart from this routing pattern, another two are also
formalized. Specifically, when an expert finds there are five
candidates to dispatch a task to — all of them can solve the
task, who is he going to contact? A straightforward approach
is to randomly pick one. An alterative is to look at the capacity
of these candidates and route more tasks to an expert who can
process more tasks. An expert could follow a certain pattern
when deciding where to transfer a task. Different experts
might adopt each routing pattern to a different degree and
demonstrate different routing behavioral characteristics. This
study is going to infer the routing patterns as well as experts’
preferences over them, from the historical routing data, and
finally give insightful analysis of experts’ performance in a
collaborative network.

The technical contributions of this work are three-fold:
First, to the best of our knowledge, we make the first attempt
to analyze the routing behaviors of experts in a collaborative
network in a large-scale, quantitative manner. We present a
general framework to model the decision making and cognitive
process of experts, and instantiate the framework with multiple
routing patterns potentially followed by an expert. A generative
model is then presented to model experts’ routing decisions as
a result of mixed routing patterns. After trained on a historical
task set, the model can uncover experts’ underlying decision

25

logic and explain real routing sequences in a held-out testing
set very well.

Second, our analytical model can accurately predict the
completion time of a task before actually routing it in the
network. On the one hand, we verify that our analysis of
experts’ routing decision making reflects the real one, in the
sense that a task navigated according to our model shall be
completed in a similar time as in the real situation. On the
other hand, estimating task completion time is important itself,
because an accurate estimate of completion time can provide
early signals on the “difficulty” or “abnormality” of a task, and
managers can allocate more resources and take early actions
to deal with such tasks and shorten customer waiting time.

Third, it is usually expensive, if not impossible, to alter
real-world collaborative networks for hypothesis testing, e.g.,
providing more training to a few critical but inefficient experts
or changing network structures for better performance. Since
our analytical model has shown similar characteristics to the
real human routing in collaborative networks, it can be used
to conduct virtual hypothesis testing. Through case studies,
we discuss how to utilize our model to optimize collaborative
networks.

II. CONCLUSION

In this paper, we model the decision making and cognitive
process of an expert during task routing in collaborative
networks. A routing decision of an expert is formulated as
a result of a generative process based on multiple routing
patterns. We formalize each routing pattern in a probabilis-
tic framework, and model experts’ routing decision making
through a generative model. Our analytical model has been
verified that it not only explains the real routing sequence of a
task very well, but also accurately predicts a task’s completion
time in the current collaborative network. In comparison with
all the alternatives, our method improves the performance by
more than 75% under three different quality measures. We
also demonstrate that our model can provide guidance on
optimizing the performance of collaborative networks.

ACKNOWLEDGMENT

This research was sponsored in part by the Army Re-
search Laboratory under cooperative agreements W911NF-
09-2-0053, NSF IIS 0917228, and 0954125. The views and
conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notice herein.

REFERENCES

(1]
[2]

“Bugzilla: http://www.bugzilla.org/.”

Q. Shao, Y. Chen, S. Tao, X. Yan, and N. Anerousis, “Efficient ticket
routing by resolution sequence mining,” in SIGKDD. ACM, 2008, pp.
605-613.

G. Miao, L. E. Moser, X. Yan, S. Tao, Y. Chen, and N. Anerousis,
“Generative models for ticket resolution in expert networks,” in SIGKDD.
ACM, 2010, pp. 733-742.

H. Zhang, E. Horvitz, Y. Chen, and D. C. Parkes, “Task routing for
prediction tasks,” in AAMS-Volume 2. IFAAMS, 2012, pp. 889-896.

[3]

[4]

SLQ: A User-friendly Graph Querying System

Shengqgi Yang Yinghui Wu

Huan Sun Xifeng Yan

University of California Santa Barbara
{sayang, yinghui, huansun, xyan}@cs.ucsb.edu

Abstract— Querying complex graph databases such as knowl-
edge graphs is a challenging task for non-professional users.
In this work, we present SLQ, a user-friendly graph querying
system enabling schemaless and structureless graph querying,
where a user need not describe queries precisely as required
by most databases. SLQ system combines searching and rank-
ing: it leverages a set of transformation functions, including
abbreviation, ontology, synonym, etc., that map keywords and
linkages from a query to their matches in a data graph, based
on an automatically learned ranking model. To help users better
understand search results at different levels of granularity, it
supports effective result summarization with “drill-down” and
“roll-up” operations. Better still, the architecture of SLQ is
elastic for new transformation functions, query logs and user
feedback, to interactively refine ranking model and searching.
SLQ significantly improves the usability of graph querying.
This demonstration highlights (1) SLQ can automatically learn
an effective ranking model, without assuming manually labeled
training examples, (2) it can efficiently return top ranked matches
over noisy, large data graphs, (3) it can summarize the query
matches to help users easily access, explore and understand query
results, and (4) its GUI can interact with users to help them
construct queries, explore data graphs and inspect matches in a
user-friendly manner.

Online demo: slq.cs.ucsb.edu

I. INTRODUCTION

Graph querying is widely adopted to retrieve information
from emerging graph databases, e.g., knowledge graphs, in-
formation and social networks. Given a query, it is to find
reasonable top answers (i.e., matches for the query) from a
data graph. Searching real-life graphs, nevertheless, is not
an easy task especially for non-professional users. (1) Ei-
ther no standard schema is available, or schemas become
too complicated for users to completely possess. (2) Graph
queries are hard to write and interpret. Structured queries (e.g.,
XQuery [2] and SPARQL [3]) require the expertise in complex
grammars, while keyword queries [7] can be too ambiguous
to reflect user search intent. Moreover, most of these methods
adopt predefined ranking model [3], which is barely able to
bridge the gap between the queries and the true matches.
(3) Moreover, it is a daunting task for users to inspect a
large number of matches produced from querying large-scale
heterogeneous graph data.

Example I.1: Consider a query asking “tell me about the
history of Jaguar in America”. The query can be presented
as either a keyword query “Jaguar history America”, or a
small graph in Fig. 1. To find answers for such a simple query
is, nevertheless, not easy. (1) A keyword e.g., “Jaguar” may
not have identical matches, but instead can be matched with
entities that are semantically close, i.e., luxury cars or animals.
How to find matches that are semantically related to the

26

“Jaguar®

result summarization

ontology-based search

___________________ ~
ontology . Y
"Jaguar" «' «' 1
(animal) - 1 '
H "history” *America” ! '
| Panthera Melanism | company !
: : Query \history habitat offer pany
H ' .
H) '
"Panthera "Black H , / Cl‘ty history !
nea' Panther” ' G H "America” "America” '
K y (continent) (country) K
....... ‘ _.......S.Gh.e.m"?'.??s.‘.&..S.th‘EtE‘.r?.'?.S.S..S.??FFh....__‘t_...........
(animal) (animal) (car) (car)
Panthera Black Jaguar XK XJ Line
(nca Panther . ‘
/ \ (com%rgny)* history Offery =«s offer,
! history habitat history habitat \ /
/ / Dearborn(city) Chicago(city) New York (city)
[

south American
(continent)

E north American
(continent)

United States

(country) (country)

result 1 result 2 result 3 result k

Fig. 1. Searching a knowledge graph

query? (2) A large number of possible answers can be identi-
fied by various matching mechanisms. For example, ‘“Panthera
Onca” is closely related with “Jaguar” as its scientific name,
while “Jaguar XK” is another match obtained simply by string
transformations. Which one is better? A ranking model should
be employed and tuned with or without manual tuning effort.
(3) There are a large number of good results, e.g., different
species related to Jaguar (result 1 and result 2), or various
car prototypes (result 3 to result k). How to help users better
understand results without inspecting them one by one? This
kind of complexity contrasts to the impatience of web users
who are only interested in finding good answers in a short
time. a

To answer these questions, we propose SLQ, a novel graph
querying system for schemaless and structureless querying. (1)
To better understand search intent, SLQ interpretsiqueries with
external ontologies to find semantically close matches. (2) It
automatically supports multiple mapping functions, namely,
transformations, e.g., synonym, abbreviation, ontology, to
identify reasonable answer via learning to rank, and works
with both (a) a cold-start strategy that requires no manual
effort for system tuning, and (b) a warm-start strategy to adjust
the ranking model with available user feedback and query
logs. (3) To help users better understand results and refine
queries, it supports concise result summarization. Users may
inspect small summaries, and then decide to (a) drill-down
for detailed matches, or (b) interactively refine queries with
interesting summaries. To the best of our knowledge, these
features are not seen before in any previous graph querying
systems (e.g., [3], [5], [4]).

SLQ system is among the first efforts of developing a
unified framework for schemaless and structureless querying.
Designed to help users access complex graphs in a much easier
and powerful manner, it is capable of finding high-quality

matches when structured query languages do not work. We
next introduce SLQ in more details.

II. SCHEMALESS AND STRUCTURELESS QUERYING

In this section we mainly present two key components
in SLQ, offline ranking model learning and online query
processing. As remarked earlier, SLQ does not require a user
to describe a query precisely as required by most search
applications. To render this high flexibility to the users, in the
core of the framework is a mechanism of transformation: given
a query, the query evaluation is conducted by checking if its
matches in a graph database can be reasonably “transformed”
from the query through a set of transformation functions.

Transformations. SLQ adopts transformation defined on the
attributes and values of both nodes and edges of the query.
A query node (or edge) has a match if it can be converted
to the latter via a transformation. For example, a query node
“IBM” shall be matched to a node with label “International
Business Machines.” The table below summarizes several
common transformations supported by SLQ.

Category Transformations
String First token, Last token, Abbreviation, Prefix, Acronym, Drop
word, Bag of words
Semantic | Ontology, Synonym (WordNet [1])
Numeric Unit conversion, Date gap, Date conversion, Numeric range
Topology | Distance, Labeled path

Better still, SLQ exposes a generic interface abstracted for
any transformation. New transformations complying with the
interface can be readily plugged in.

Example II.1: As in Fig. 1, SLQ captures the matches for
the keyword “Jaguar” as follows. (1) The matches “Panthera
Onca” and “Black Panther” can be identified by ontology
transformation. (2) The match “Jaguar XK” can be matched
by “First token”, a String transformation. (3) The match “X]J
Line” can be captured by “Bag of words”, indicating “Jaguar”
appears in its text description. For edge (“Jaguar”, “America”),
an topology transformation “Distance” maps it to a path from
“Panthera Onca” to “north America” in result 1. O

Matching Quality Measurement. To measure the quality of
the matches induced by various transformations, SLQ adopts
a ranking function of weighted transformations. The function
incorporates two types of score functions: node matching and
edge matching score function. Each score function aggre-
gates the contribution of all the possible transformations with
corresponding weights. More specifically, by harnessing the
probabilistic graphical model, we define the ranking function
with Conditional Random Fields [6], since it satisfies two
key considerations: using training data, its formulation could
optimize the weights of the transformations for good ranking
quality; the inference on the model provides a mechanism to
search top-k matches quickly.

Ranking model learning. A key issue is how to select
a ranking function by determining reasonable weights for
the transformations. Simple approaches, e.g., assigning equal

27

transformation weights or calibrating the weights by human
effort, are clearly not the best strategies. Instead, SLQ automat-
ically figures out the weights from a set of training instances
with machine learning techniques. Each instance is a pair of
a query and one of its relevant (labeled as “good”) answers.
The learning aims to identify for each transformation a weight,
such that if applied, the model ranks the good answers as high
as possible for each instance.

SLQ begins with a cold-start stage where no manual effort
is required for instances labeling, and can be “self-trained”
in the warm-start stage, using user feedback and query logs.
Once the transformation weights are determined, SLQ readily
use the ranking model to determine good matches.

Query Processing. SLQ efficiently finds top matches as
follows. (1) To fast extract matches, it leverages approximate
inferencing [6] for graphical models. It treats a query as a
graphic model and the matches as assignment to its random
variables (query nodes). By iteratively propagating messages
among the nodes in the graphical model, the inference can
identify top assignments (matches) that maximize the joint
probability (ranking score) for the model. This technique
dramatically reduces the query processing time, with only
small loss of match quality (less than 1% in our validation). (2)
SLQ further reduces the matches to be inspected. It constructs
a small “sketch” of a data graph that can be directly queried.
The sketch guarantees that the ranking score of each match it
provides estimates an upper bound of a set of matches in the
data graph. Putting (1) and (2) together, SLQ computes good
matches by performing a two-level inferencing. It iteratively
extracts “upper-level” matches from the sketch and then drill
down the match to find more accurate “lower-level” ones,
until the lowest ranked lower-level match is better than a next
upper-level match. Following this, SLQ avoids unnecessary
computation for the low quality matches.
I1I. CONCLUSION

In this work, we developed a novel searching framework
SLQ. Surrounding this new query paradigm, there are a
few emerging topics worth studying in future, e.g., com-
parison of different probabilistic ranking models, compact
transformation-friendly indices, and distributed implementa-
tion.

REFERENCES

(1]
(2]

Wordnet. wordnet.princeton.edu.

D. Chamberlin et al. XQuery 1.0: An XML Query Language. W3C
Working Draft, June 2001.

J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,
and G. Weikum. Yago2: Exploring and querying world knowledge in
time, space, context, and many languages. In WWW, 2011.

D. Mottin, M. Lissandrini, V. Yannis, and T. Palpanas. Exemplar queries:
Give me an example of what you need. In VLDB, 2014.

J. Pound, I. F. Ilyas, and G. Weddell. Expressive and flexible access
to web-extracted data: a keyword-based structured query language. In
SIGMOD, 2010.

C. Sutton and A. McCallum. An introduction to conditional random
fields for relational learning. Introduction to statistical relational learning,
93:142-146, 2007.

H. Wang and C. Aggarwal. A survey of algorithms for keyword search
on graph data. Managing and Mining Graph Data, pages 249-273, 2010.

[3]

(4]
(5]

(6]

(71

Advocacy Citizen Journalism and their Participatory Audience

Saiph Savage
4 Eyes Lab, UCSB
Email:saiph@cs.ucsb.edu

Abstract—This paper presents a descriptive analysis of a
popular Facebook page used to circumvent the information
blackout in certain regions of Latin America. The page has
more than 170,000 fans respectively. This work presents a
descriptive analysis of the page and its audience. We examine
the full 6,000 posts by the page’s administrators, and more
than 108,000 comments by their fans. We extract themes, post
frequency, and its relationship with offline events and public
figures. We argue that the page presents a novel form of
participatory propaganda online that helps people make sense
of what is taking place in their neighborhoods and country,
and, in some cases, foster offline collective action. We conclude
by discussing possible applications of these findings for the
design of civic engagement technologies.

I. INTRODUCTION

In recent years, journalists across the world have been threaten or
kidnapped for covering certain topics.These attacks from organized
crime, and even government officials force many journalists to cen-
sor themselves. Previous research has shown how this information
vacuum motivates people to use social media to report, in real-
time, the location and nature of important events taking place in
their cities and towns [1]. The work has also documented the
emergence of citizen “news correspondents” who use their Twitter
visibility to receive and curate news reports of what happens in
their communities.

In addition to Twitter, citizen reporters are using other platforms,
such as Facebook and YouTube for their news reporting. This
paper studies how citizen reporters use the open platform of social
media, and how people react and take part in their content. One
angle we are particularly interested in analyzing is what content
from citizen reporters obtains the most participation from their
audience, and what is the profile of the audience members who
participate the most in the content. We attempt to address the
following research questions using data from a Facebook page
related to citizen reporters:

b

2)

What type of content are citizen reporters sharing online,
and how do their audience react to such content?

What type of content from citizen reporters attracts the most
newcomers, i.e., new audience members?

What are the traits of the audience members who participate
the most in the content from citizen reporters?

What are the characteristics of the most popular content from
citizen reporters?

3)
4)

We examine the patterns of communication between audiences
and the Facebook page in question, i.e., the citizen reporters who
control and administer the page. We apply human coding and
quantitative analysis to obtain a deeper understanding of how
audiences participate in content linked to citizen reporters.

We reveal that citizen reporters are creating an interactive digital
space where citizens are explained how the complicity of the

28

Andres Monroy-Hernandez
Microsoft Research
Email:amh@microsoft.com

«C
‘B
) A
o
0 200 400 600 800

Number of Comments

Figure 1. Number of likes and comments for all posts, size of
a point is directly correlated with the number of reshares of a
post. The most popular content was published during major offline
events.

Table I

DATA.
Number of Posts 6,901
Number of Fans 158,000
Number of Participants (active audience size) 127,374
Number of Comments 108,967
Number of Post Likes 1,481,008
Number of Reshares 364,660

political situation in their towns and neighborhoods relates to them
personally. Through their page citizen reporters even suggest direct
actions audiences can conduct to take part in collective efforts that
could transform their towns. The page is also harvesting a space
where audiences are helped to maintain safety and are provided
social support, where they can discuss and grieve personal family
problems.

We find that the most popular content from citizen reporters
emerged during major offline events, e.g., street manifestations
against the government. It is also during these times the page
manages to recruit the most newcomers. We also uncover that these
citizen reporters have two main types of highly active audience
members: those who use their page to discuss crime; and those
who use the page to vent about the government. From a practical
outlook, our study is important to the development of technology
for political participation.

Through our case study of these citizen reporters, we obtain
a glimpse of three possible emerging phenomena: 1. how self-
organized citizen reporting looks like online, 2. collaborative
commentary and reflection of community issues, 3. scaffold in
collective action.

II. METHODS

Our study is based on data from a facebook page linked to citizen
reporters downloaded via the Facebook API. The downloaded data
includes posts, comments, likes, and reshares, and spans a time

period from the page’s start date, August 14, 2013, to May 7,
2014. Details of our dataset are shown in Table I.

To respond our research questions, we characterize the page’s
content and the audience’s reactions. More specifically, for R1 we
obtain an overview of the posting behavior of the page admins
(citizen reporters) and its audience’s participatory activity through
time. To discover the topics we use a grounded approach with
Odesk workers to thematize the 6,901 posts. The purpose of our
coding is to obtain a descriptive assessment of the posts; for
R2 we study the nature of the pages messages which have the
largest number of active newcomers; for R3 we characterize the
most active audience members; and finally for R4 we focus on
characterizing the pages most popular content.

In the following, we describe some of the attributes we analyze
to characterize the pages content and the behavior of its most active
audience members:

Profiling Most Active Audience Members

We profile the page’s most active audience members to begin to
uncover the traits of the people most dedicated to the reports made
by citizen journalists. We consider that the most active audience
members are the ones who produce the most comments. We focus
on comments because they typically take more time to produce than
a “like,” and can provide more hints about how dedicated a person
is in a page or even a political movement. We use comments as a
window to study how active audience members are in the page.

We identify the most active participants by finding those in-
dividuals whose number of comments deviate by three times the
standard deviation (normal procedure to identify outliers.) We then
characterize the most active audience members in terms of the type
of public figures they mention in their comments (such analysis
helps signal what a person cares about most.) We calculate the
degree with which a participant mentions a certain type of public
figure as follows:

P(a,G) = > P(a)P(w]a)P(Glw), (1)

wew

where P(a,G) is the probability audience member a mentions a
public figure related to group G (type of public figure) given her
comments; P(a) = n~', is the probability of selecting audience
member a; n is the total number most active audience members;
P(w|a) = m™" is the probability of a particular word w appearing
in audience member a’s comments; m is the total number of words
that audience member a has used; P(G|w) = 1, when the word
w is relevant to the group G (i.e., the word w references a public
figure that belongs to group G,) or zero otherwise.

For each active audience member we calculate for all groups her
P(a, @), and form a vector representing how much the person has
mentioned different groups of public figures in her comments. The
vector’s size corresponds to the different groups of public figures,
in this case the size is 4 (this corresponds to the number of different
public figures that were discovered in our data.)

We use these vectors to cluster audience members who mention
the same type of public figures and to a similar degree. For
instance, people who only mention public figures related to
the government might be grouped together. We use mean shift
algorithm to group together similar vectors, and discover clusters
of people. We decided to use mean shift algorithm because it
is based on nonparametric density estimation, and therefore we
do not need to know the number of clusters beforehand (unlike
K-means.) We let mean shift algorithm discover the clusters from
our data. We use the clusters to study the different behavior of
the most active audience members.

29

Most Popular Content

In Figure 1, we present a scatter plot illustrating the number
of likes, comments, and reshares of each Facebook post from the
citizen reporters. The Xaxis shows the number of comments the
post received; the Yaxis, the number of likes. The size of the circle
relates to the number of reshares; the larger the circle, the more the
post was reshared. We defined VXM’s most popular content as the
posts whose total number of likes, comments, and reshares deviated
by three times the standard deviation. We labeled the most popular
posts alphabetically and examined a few of their characteristics.

III. DISCUSSION

Through our case study of a Facebook page linked to citizen
reporters we witnessed how an online space linked to citizen re-
porters is starting to foster a participatory culture [3] by providing:
1. low barriers for participatory engagement to audience members;
2. informal mentorship; 3. social connection and 4. support for
participation.

Over and over we saw how the audience helped contribute a
better picture of what was taking place in certain towns. We believe
there is value in creating tools that let citizen reporters better
collaborate with their online audience. Perhaps it is about designing
tools that let citizen reporters visualize [7] and understand [5]
the traits of their audience to dispatch journalist tasks for them.
For this purpose it might make sense to adopt techniques used to
crowdsource other creative tasks with citizens, e.g., a crowdsourced
orchestra [6]. Within these types of systems, it might also be
relevant to model the spatial temporal constraints of audience
members and willing citizen reporters [4] with the purpose of better
dispatching who will report about a certain event that is taking
place. For instance, a person on a car could provide reports not
available to citizens walking and vice-versa.

REFERENCES
[1]

Monroy-Hernandez, Andres, et al. “The new war correspon-
dents: The rise of civic media curation in urban warfare.”
CSCW’13.

[2] Mark, G. J., Al-Ani, B., and Semaan, B. Resilience through
technology adoption: Merging the old and the new in iraq.
CHIO09.

[3] Jenkins, H. Confronting the challenges of participatory culture:
Media education for the 21st century. Mit Press, 2009.

[4] Savage, N.S, Baranski, M.,Chavez,N.E., Hollerer T. I'm feeling
LoCo: A Location Based Context Aware Recommendation
System. Proc. 8th International Symposium on Location-Based
Services, Lecture Notes in Geoinformation and Cartogra-
phy,Springer.

[5] Savage, Saiph, et al. ”Visualizing Targeted Audiences.” COOP
2014-Proceedings of the 11th International Conference on
the Design of Cooperative Systems, 27-30 May 2014, Nice
(France). Springer International Publishing, 2014.

[6] Savage, S., Chavez, N. E., Toxtli, C., Medina, S., Alvarez
Lopez, D., & Hollerer, T. (2013, February). A social crowd-
controlled orchestra. In Proceedings of the 2013 conference
on Computer supported cooperative work companion (pp. 267-
272). ACM.

[7] Forbes, Angus Graeme, Saiph Savage, and Tobias Hollerer.
”Visualizing and verifying directed social queries.” IEEE
Workshop on Interactive Visual Text Analytics. Seattle, WA.
2012.

Collaborative Interfaces for Designing Optical Fiber Networks

Julio Cruz
Universidad Nacional
Autonoma de Mexico

Hugo Leon
Universidad Nacional
Autonoma de Mexico

Abstract—The deployment of optical fiber networks is in-
creasing in the world. However, designing these networks can
be challenging, especially because there are currently few
specialized tools for designing such networks. In this paper we
discuss interfaces focused on helping people design optical fiber
networks. Our tool is equipped with interaction mechanisms
through which people can automate many of the tasks related
to designing networks. We also give people different data
visualizations that enable them to have a better overview
and understanding of the physical space where their network
design will be placed. We also leverage the knowledge of other
designers to help network designers collaborate and build off
the work of others, while still leaving room for their own
unique creations. This work contributes to the design of tools
for sketching and modeling telecommunication networks.

I. INTRODUCTION

In the last decade we have witnessed a growth in the number
of optical fiber networks that exist in people’s homes and orga-
nizations [2]. This increase has mainly been because people want
faster Internet communication to access: video-based multimedia,
rapid peer-to-peer file transfer, high definition multimedia online
gaining, among other services. Similarly, the increment in per-
sonalized services that know the end-user’s every need through
constant monitoring, has also increased network traffic. Optical
fiber networks are now found in a variety of places, such as
homes, government organizations, private companies, among other
edification [3]. Despite its increase, little attention has been paid to
creating specialized tools that facilitate the design of fiber optical
networks. Most research and industry tools, including those tailored
for traditional copper wires, have focused on the management and
documentation of networks, or helping people visualize network
vulnerabilities [1,5,6]. Yet, specialized network design tools could
streamline design work, reduce network costs, and facilitate trou-
bleshooting in the design stage and not at the stage of installation
and implementation of the network.

In this paper we present: FiberKraft, a computer aided design
(CAD) tool with a graphic environment that is tailored to assist
people in the design of optical fiber networks for homes and
businesses. Our tool helps designers to: 1) spatially organize the
physical space their network will cover; 2) save time designing
the telecommunication and urban infrastructure of their network;
3) quantify the amount of material their network requires; d) and
obtain ideas from a specialized crowd on how to design the network
of a certain home or organization.

II. SYSTEM DESIGN

FiberKraft was developed in C#, in conjunction with AutoCAD
2013 which works as an external program execution. We choose
this configuration, so that anyone acquainted with AutoCAD could
potentially start using FiberKraft and avoid having to learn a new

Saiph Savage
4 Eyes Lab,
UC Santa Barbara

30

Tobias Hollerer
4 Eyes Lab,
UC Santa Barbara

Norma Elva Chavez
Universidad Nacional
Autonoma de Mexico

Screenshot of the insertion of elements FTTH and
creation of a summary table.

Figure 1.

system. The interface of our tool is composed of 2 main parts:
Workplace Definition and Sketching Area.

Workplace Definition: This component lets designers work on
a new project that contains all the elements needed for designing
a network. The end project is loaded in AutoCAD. The designer
can set values such as the address of the physical space where the
network will be placed, or date. We use the geographical location
to help designers potentially find other network designs in the
area. We believe designers can benefit by exploring the networks
designs of others, especially if the designs are from homes near
the one the designer is currently working on, as they might have
similar structures and geographical problems.

Sketching Area: This component lets designers draw the phys-
ical space surrounding the network they are designing, and explore
different network designs. We let people share the physical spaces
and networks they have sketched, as well as use the sketches of
others. FiberKraft tries to make people leverage the work of the
crowd to help in the design of their own the fiber networks. To start
their sketches, designers are given the option of either entering a
drawing in the sketching area by inserting a DWG file from any
computer path, or directly drawing blocks that represent different
neighborhoods. Four vertices define the geometry of one block
and when the person finishes drawing the block, the information
is saved in the internal data base of our application. The block
basically helps to define a neighborhood with its houses and roads.
The person can also add metadata to the neighborhood she drew.
The metadata usually holds details about the neighborhood, such
as date it was founded etc. People can use the metadata and stored
information to search for neighborhoods that are similar to the ones
they are working on. This enables people to see how others have
structured the network under similar conditions, and get ideas of
how they will start their own design. We also provide the option
of splitting neighborhoods into lots. Lots are basically residential
buildings that can have (or not) already an optical fiber network.
Examples of lots are business buildings, malls, apartment houses,
among others. Designers can also draw lots with four vertices.
Designers can set values for each lot such as: address, number of
telephone lines and lot type (e.g., mall). FiberKraft automatically
calculates the area that defines the lot, thus helping the designer

to better calculate the costs of putting a fiber optical network
in a particular building. Internally our tool differentiates between
the geometry of blocks (neighborhoods) and lots (buildings.) We
allow people to zoom in and out to easily view the total number
of neighborhoods and buildings they have drawn. This can help
people get a better overview of the physical space where they will
design the network. The designer is also empowered to insert urban
infrastructure into the sketching area such as: pipelines, trees, poles,
terminals, among other elements.

We provide a default set of urban structures that people can
use in their sketches These elements facilitate network designers
tasks, as in most cases the person had to invest time in manually
drawing the elements herself. Our tool also empowers designers to
insert telecommunication infrastructure, specifically those related
to the infrastructure of a Fiber to the X (e.g., home) network with
PON (passive optic network) architecture such as: optical splitters,
optical line terminals (OLT’s), optical network terminations (ONTSs)
etc. Designers can also select the types of wires that will be drawn
from the fiber network such as the feeder cabling, distribution
cabling and the users line. People can make this selection by simply
setting the insertion point and scale for each item. Additionally, we
provide mechanisms to help automate this selection process: the
person has to simply draw a polyline of n vertices that represents
the path of the cable and the type of cable. Overall, our interface
provides mechanisms to save designers time in repetitive tasks.
Figure 1 shows a palette that contains telecommunication elements
that can be inserted onto the sketching area. The counting for each
telecommunication element inserted and the total length of each
kind of cable is presented in the summary table shown in the
right. The table helps designers have an overview of the costs
of their current network design. Aside from the default urban
and telecommunication infrastructure provided, designers can also
define their own infrastructures and share it with the crowd. People
can easily build off the infrastructures others have defined. This
type of sharing lets our tool be always up to date with the different
infrastructures as it is driven by the people.

FiberKraft also provides designers with different visualizations
and cues to obtain better perspectives of the physical space and
infrastructure where their network will be placed. As mentioned
previously we provide people with a table that lets them have
an overview of the number of urban and telecommunication in-
frastructures. Additionally, we give designers tree views where
they can visualize the buildings they have defined in different
neighborhoods. We show the data related to the buildings in
a hierarchical form to facilitate the visualization of the urban
infrastructures and telecommunication elements in the building, and
within the neighborhood. Similarly, people can view the network
designs of others, letting them better inspect the physical spaces
others have worked on, and network designs proposed for those
spaces. We believe this can help people obtain ideas of how they
will design their own network, and avoid some of the problems
others have gone through.

IIT. CONCLUSIONS

The installation of Fiber optical networks is increasing in the
world. It is therefore necessary to have tools that facilitate the
design of these networks for a variety of different physical loca-
tions. In this paper we presented a specialized tool, FiberKraft, for
designing fiber optical networks. Our tool strives to help network
designers in three main ways: 1) save designers time in trivial tasks,
such as drawing network infrastructure or doing summary tables;
2) provide ways to visualize their network design from different
perspectives; 3) facilitate integrating the crowd to provide ideas
and keep the tool updated. Our research contributes to the design

31

of novel interfaces for designing networks. It also lets us explore
how tools for conducting specialized tasks can be enhanced by
providing specialized interaction mechanisms and leveraging the
crowd’s work. In the future, we plan on exploring how different
interface designs affect the collaborations between designers. We
wish to explore how contextual cues about a neighborhood and its
citizens, e.g., type of buildings, roads and citizen mobility [7], can
facilitate network design. We would also like to adopt techniques
from visualizing online users [8], [10] to help designers visualize
the traits of other network designers. This could help them identify
people with whom they could collaborate with; or people whose de-
signs they could trust more. Designing optical networks can involve
some creativity. It might then make sense to adopt techniques used
to crowdsource creative tasks, e.g., a crowdsourced music making

(9], [4].
REFERENCES

[1] Miguel Alberto Planas, Doug Edward Talbott, Network man-
agement graphical & user interface, US Patent, 2000
[2] Koonen, Ton. “Fiber to the home/fiber to the premises: what,
where, and when?” Proceedings of the IEEE 94.5 (2006): 911-
934.
[3] Lin, Chinlon, ed. Broadband optical access networks and fiber-
to-thehome: Systems Technologies and Deployment Strategies.
John Wiley & Sons, 2006.
[4] C. Jette, K. Thomas, J. Villegas, and A. G. Forbes. Translation
as technique: Collaboratively creating an electro-acoustic com-
position for saxophone and live video projection. Proceedings
of the International Computer Music Conference (ICMC),
2014.
[5] Carl T. Madison, Jr., Richard C. Flathers, Configurable graph-
ical user interface useful in managing devices connected to a
network, US Patent, 1999
[6] Marshall Strickland, Rob Strickland, Graphical user interface
for customer service representatives for subscriber manage-
ment systems, US Patent, 1999.
[7] Savage, N.S, Baranski, M.,Chavez,N.E., Hollerer T. I'm feeling
LoCo: A Location Based Context Aware Recommendation
System. Proc. 8th International Symposium on Location-Based
Services, Lecture Notes in Geoinformation and Cartogra-
phy,Springer.
[8] Savage, Saiph, et al. ”Visualizing Targeted Audiences.” COOP
2014-Proceedings of the 11th International Conference on
the Design of Cooperative Systems, 27-30 May 2014, Nice
(France). Springer International Publishing, 2014.
[9] Savage, S., Chavez, N. E., Toxtli, C., Medina, S., Alvarez
Lopez, D., & Hollerer, T. (2013, February). A social crowd-
controlled orchestra. In Proceedings of the 2013 conference
on Computer supported cooperative work companion (pp. 267-
272). ACM.

[10] Forbes, Angus Graeme, Saiph Savage, and Tobias Hollerer.
”Visualizing and verifying directed social queries.” IEEE
Workshop on Interactive Visual Text Analytics. Seattle, WA.
2012.

Comparing Different Cycle Bases for a Laplacian Solver

Erik G. Boman*

1 Kelner et al.’s Randomized Kaczmarz Solver

Solving linear systems on the graph Laplacian of large
unstructured networks has emerged as an important
computational task in network analysis [7]. Most work
on these solvers has been on preconditioned conjugate
gradient (PCQG) solvers or specialized multigrid methods
[6]. Spielman and Teng, showed how to solve these
problems in nearly-linear time [8], later improved by
Koutis et al. [5] but these algorithms do not have
practical implementations. A promising new approach
for solving these systems proposed by Kelner et al. [4]
involves solving a problem that is dual to the original
system.

The inspiration for the algorithm is to treat graphs
as electrical networks with resistors on the edges. The
graph Laplacian is defined as L = D — A where D is
a diagonal matrix containing the sum of incident edge
weights and A is the adjacency matrix. For each edge,
the weight is the inverse of the resistance. We can
think of vertices as having an electrical potential and
net current at every vertex, and define vectors of these
potentials and currents as ¢ and X respectively. These
vectors are related by the linear system Lv' = ¥. Solving
this system is equivalent to finding the set of voltages
that satisfy the currents. Kelner et al.’s SimpleSolver
algorithm solves this problem with an optimization
algorithm in the dual space which finds the optimal
currents on all of the edges subject to the constraint of
zero net voltage around all cycles. They use Kaczmarz
projections [3][9] to adjust currents on one cycle at
a time, iterating until convergence. They prove that
randomly selecting fundamental cycles from a particular
type of spanning tree called a “low-stretch” tree yields
convergence with nearly-linear total work.

" *Sandia National Laboratories, Sandia is a multi-program lab-
oratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000. eboman@sandia.gov

fUC Santa Barbara Dept. of Computer Science, Supported
by Contract #618442525-57661 from Intel Corp. and Con-
tract #8-48252526701 from the DOE Office of Science. kde-
weese@cs.ucsb.edu, gilbert@cs.ucsb.edu

32

Kevin Deweese!

John R. Gilbert!

(d)

Figure 1: Grid Cycles

2 Choosing the Cycle Basis

We examine different ways to choose the set of cycles
and their sequence of updates with the goal of providing
more flexibility and potential parallelism. Our ideas
include the following.

e Provide parallelism by projecting against multiple
edge-disjoint cycles concurrently.

e Provide flexibility by using a non-fundamental cy-
cle basis.

e Provide flexibility by using more (perhaps many
more) cycles than just a basis.

e Accelerate convergence by varying the mixture of
short and long cycles in the updating schedule.

Sampling fundamental cycles from a tree will require
updating several potentially long cycles which will not
be edge-disjoint. It would be preferable to update
edge-disjoint cycles as these updates could be done
in parallel. Instead of selecting a cycle basis from a

spanning tree, we will use several small, edge-disjoint
cycles. We expect updating long cycles will be needed
for convergence, but we consider mixing in the update of
several short cycles as they are cheap to update and have
more exploitable parallelism. These cycles can then be
added together to form larger cycles to project against
in a multigrid like approach.

An example of these cycles can be seen on the 5 by
5 grid graph in Figure 1. Figure 1(a) shows a spanning
tree in which each cycle is determined by an edge not
in the tree. The smallest cycles of a non-fundamental
scheme are shown in Figures 1(b)(c). All the cycles in
each of these two figures are edge-disjoint and can be
updated in parallel. They can also be summed together
as in Figure 1(d).

3 Preliminary Experiments and Results

We performed our initial experiments on grid graphs of
various sizes. We used a non-fundamental set of cycles
with a hierarchical ordering. The smallest set of cycles
are updated. Then the cycles are coarsened and the
next level of cycles are updated. This is done until
reaching the perimeter cycle before resetting back to
updating the smallest cycles. We also implemened the
SimpleSolver algorithm in Matlab, except that we used
a random spanning tree for sampling instead of a low-
stretch tree. We also haven’t implemented a clever data
structure Kelner et al. use to quckly update edges. We
also compared our results to PCG with Jacobi.

The metric we choose for comparison is the total
number of edges updated, or matrix elements touched
in CG. We can see the total work measured in edges
updated in Table 1. Also shown in the table is an
estimated potential parallelism using the work-span
model [10]. The span, or critical path length, is the
maximum number of edges that would have to be
updated by a single processor if we can split the work
over infinitly many processors.

Grid Size (Vertices) 25 | 289 4,225
Fundamental Cycles Work | 8K | 1.4M | 296M
Alternative Cycles Work 1K | .08M AM
Alternative Cycles Span | .5K | 8.4K | 105.8K

PCG Work 1K | .09M 5M

Table 1: Edges Updated

4 Conclusions and Future Work

Our preliminary experiments show that choosing a non-
fundamental set of cycles can save significant work com-
pared to a fundamental cycle basis, and can be at least
competitive with PCG.

33

We are exploring ways to find a non-fundamental
cycle basis of more general graphs; one challenge is how
best to find large sets of short edge-disjoint cycles for
parallelism. Our ideas for cycle finding include short-
cuts to the spanning tree cycles and growing small cy-
cles locally around vertices and edges. We also plan to
make a rigorous comparison with several other precon-
ditioned CG methods, including incomplete Cholesky
and support-graph techniques.

We note that any of these graph Laplacian solvers
can be extended to general symmetric diagonally domi-
nant systems via standard reduction techniques. [1] [2].

References

[1] E. G. Boman, D. Chen, B. Hendrickson, and S. Toledo.
Maximum-weight-basis preconditioners. Numerical
Linear Algebra Appl., 11:695-721, 2004.

K. Gremban. Combinatorial Preconditioners for
Sparse, Symmetric, Diagonally Dominant Linear Sys-
tems. PhD thesis, Carnegie Mellon University, Pitts-
burgh, October 1996.

S. Kaczmarz. Angenaherte auflosung von systemen lin-
earer gleichungen. Bulletin International de lAcademie
Polonaise des Sciences et des Lettres, 35:355-357, 1937.
J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu.
A simple, combinatorial algorithm for solving SDD
systems in nearly-linear time. In Pro 45th ACM Symp.
Theory of Comp., (STOC ’13), pages 911-920, New
York, 2013.

I. Koutis, G. L. Miller, and R. Peng. Approaching opti-
mality for solving sdd systems. CoRR, abs/1003.2958,
2010.

O. E. Livne and A. Brandt. Lean algebraic multigrid
(LAMG): Fast graph Laplacian linear solver. SIAM
Scientific Comp, 34(4):B499-B522, 2012.

D. A. Spielman. Algorithms, graph theory, and linear
equations in Laplacian matrices. In Proceedings of the
International Congress of Mathematicians, volume 4,
pages 2698-2722, 2010.

D. A. Spielman and S. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the
Thirty-sizth Annual ACM Symp. on Theory of Comp.,
STOC 04, pages 81-90, New York, NY, USA, 2004.
ACM.

S. Toledo. An algebraic view of the new randomized
Kaczmarz linear solver. Presented at the Simons
Institute for the Theory of Computing, 2013.

B. Wilkinson and M. Allen. Parallel Programming:
Techniques and Applications Using Networked Work-
stations and Parallel Computers. Prentice Hall, 2004.

2]

[10]

Assailed: A story illustration algorithm to generate a data structure
connecting content, art and object

Carrie Segal and Joseph McMahan

Fig. 1. A Sequence of Pages, expressing color and emotion.

Abstract—Assailed is a visual story illustrator that generates a data structure connecting content, art and objects. When the algorithm
analyzes the text of a story it scans for configurable keywords. The keywords contain dictionaries of additional information, to be
accessed at a later point in the visualization generation. The selection of keywords is customizable. The keywords selected for the
initial visualization are common colors that are observed to occur frequently near description of physical objects. A list of phrases
based on the keywords is constructed for use in data mining content from the physical web through curated content filters. Assailed
builds a representation of a book from which (1) Physical objects could be made (2) An illustrated paper book is generated, and (3) A
paper book can be viewed through a device portal and return to the web.

Index Terms—Algorithm, visualization, picture generation, line and curve generation

<+

1 INTRODUCTION

The Information Age has given rise to deep changes in many
aspects of our lives, not the least of which is the field of “digital
media.” However, the oldest and longest-lasting common medium for
information and entertainment — the written word — has remained
unchanged by these new technologies. Though reading now often
takes place on a tablet or screen instead of a physical page, the format
of the presented information is identical. The encoding of strings
consisting of a limited number of glyphs remains the primary form of
communication across these devices which, are connected to a vast
pool of information resources.

With the high level of connectivity offered by the Internet, the
common act of reading has the potential to become an immersive
experience. When curious, it is possible to enter a keyword into
Google and instantly see thousands of results — our visualization
algorithm intends to bring the same high level of exploration
and integration of physical content into the reading experience. The
story incorporates access points to explore information, art, and things.

Assailed is a fast and responsive cloud-based engine which in-
tegrates a variety of web APIs for gathering content and generating
an illustrated story whose illustrations connect back to real objects,
designs, and ideas. The resulting html page or pdf is reminiscent of
illuminated manuscripts — but produced on-demand, from content

34

around the web.

At its first level, Assailed aims to create an automated visual
companion to stories, providing a computerized update to the oldest
art form. Beyond this, it’s about connecting the stories we read to
the Network of Ideas and the Network of Things. A user can simply
enjoy the new, visual mood set by the collection of images gathered
for each paragraph, or can click and navigate at will to explore new
art, objects, and ideas, allowing the story to leap from the page to the
web.

2 MOTIVATION

Prior to the age of the printing press, information was communicated
through handwritten documents. Medieval manuscripts, which were
drawn by hand on parchment, were frequently enhanced with art-
work, including intricate ornamented decorative borders and narrative
scenes. [7] The books are drawn using line drawings and finished with
colored inks. Many of the books are decorated with gold, showing the
high degree of value attributed to the recorded words.

The arrival of the printing press in 1450 resulted in the first uses of
movable type, to replicate a fixed information structure across many
different dissemination copies. Of particular note is that this mass pro-
duced printed work was also hand finished with detailed illustrations
depicting the natural world. The first book printed using Gutenberg’s
movable type was the Bible. In particular, the first page of the Book
of Proverbs is decorated with illustrations. The paintings of the natu-
ral world, including monkeys and berries, were added after the book
was printed using the press. The surviving copies of the Gutenberg
bible are unique, which each copy including individually made art-

work. Assailed is an algorithmic approach to illustrating books. It

Fig. 2. A close up of the illustrations in the Book of Proverbs show a
parrot, a monkey and berries. [2]

implements a variant of procedural generation, similar to evolutionary
art which changes based on external variables. [3] The seeds used in
the rule based generation of the illustrations are taken from the text
of stories. The changes in the images used in the borders are at first
decided by maker communities, and as time progresses by the readers
of the book.

3 PAGE GENERATION

Assailed is intended to evoke familiarity through resemblance to a
book, and, at the same time, to present additional information in par-
allel alongside the text. A single book is created from an original tem-
plate. Currently there is one template that is used to generate all illus-
trations. The template is drawn using scalable vector graphics [SVG]
which are generated by the text on that page. When a page is created, it
is assigned a collection of paragraphs which contain keyword phrases.
The keyword phrases are then used to find images corresponding to
the phrase, and the keywords have their own features assigned to their
data structure.

The overall goal of Assailed is to encapsulate the experience of
reading an old illuminated manuscript with connectivity to the web.[4]
This is the motivation for the page layout. The interest in the particular
template used to generate all of the books is based on the simplicity of
the design. All of the rendered circles are placed at locations prede-
termined by the algorithm. This means additional modifications to the
drawn illustrations are possible, by incorporating functions for curves
into the data structure containing information on keyword features.

(8]

Fig. 3. lllustrations contained within the borders of illuminated
manuscripts make frequent use of geometric curves, which are incor-
porated into the Assailed illustration algorithm. Lines are formed from
overlapping circles, and once lines can be rendered, a variety of other
shapes can be drawn, such as trefoils, curls, spirals and overlapping
combinations of each. Different feature descriptors can incorporate
color, shape and shading.

The print copy of the book is built from the same underlying data
structure as the web copy. The only difference is the print copy uses
higher resolution graphics and replaces the link to the next page with
the page number of the book.

The imagery of the page is created using D3 [1], which is a
javascript library for the dynamic rendering of webpages using HTML,
CSS and SVG web standards. The rendering is performed using scal-
able vector graphics (svg) and JPEG images. The output and place-
ment of the images and shapes are driven by the properties of the fea-
ture descriptors contained within the data models for the keywords.

This means the templates are expandable to encompass a variety of
display algorithms.

The ID’s of the circular images are generated as strings from an
integer property stored in the array corresponding to that region. They
are then used as string URLSs in the background fill of the circles. This
is how the data structure is able to render new images on each turn of
the page. The printed pdf is created by rendering each page to PDF
using an automated tool such as wkpdf. [6]

Overall, the process of page generation consists of accessing infor-
mation from several sources and using the crowd-sourced images and
tags to determine context. Parameters are then set to configure how
the borders are displayed. Information from the content sources pro-
vides data on type of information, descriptive tags, etc., which can be
combined with keyword features extracted from textual phrases (like
the sentiment of a passage).

The combination of keyword features and natural language process-
ing analysis determines what should be displayed. Image processing
can yield additional data for this purpose, such as dominant shapes,
colors, and scene descriptors for each image, adding to the information
used in deciding what SVGs to render. Furthermore, the companion
colors and layout patterns of the images offer another degree of cus-
tomization based on what is being displayed and what is happening in
the passage. For example, if textual parsing reveals that a paragraph is
tense or contains conflict, the geometric curves governing layout can
be made higher frequency, the subset of displayed images used could
focus more on art and objects that are tagged with conflict-related key-
words, and the algorithm could more heavily weight images that have
sharp features or stark contrasts. The intention is for the algorithm
making these decisions to learn over time, varying output based on
story, user, and page.

4 RESULTS

While exploring preliminary results of the story illustration algorithm
we used two books. The books were selected for there commonly
known use of colors throughout the story. First, the book “Dorothy
and the Wizard in Oz”, by L. Frank Baum was used for development.
A second book, “The Colors Of Space”, by Marion Zimmer Bradley,
was periodically used to test for differences across works. The Colors
Of Space is a longer book, with a distinctly different tone than Dorothy
and the Wizard in Oz.

The analysis of results begins with reviewing the keyword phrases.
The keywords are a mixture of physical things such as ‘the sky bal-
loon’, atmospheric descriptions such as ‘the grey dawn’ and characters
i.e. ‘little black dog’. The resulting curated search images for these
phrases are relatively accurate, with ‘little black dog’ returning art-
work of black dogs. The phrase ‘the sky balloon’ returns with images
relating to how hot air balloons work and how we measure information
about the sky using weather balloons. A way to gain an overall feel
for the book is to examine the colors corresponding to the keywords
found on each page.

Comparing the color spectrum of Dorothy and the Wizard in Oz vs
The Colors of Space, the two books clearly have different narrative
arcs. Seeing a simple summary of the text via color is a fast method
for a user to perceive the mood of a story. [5] These results use only
a single feature descriptor as well. Once we increase the number of
feature descriptors we expect to be able to quickly present increasingly
more meaningful summary images.

REFERENCES

(1]
(2]
(3]
(4]
[5]

M. Bostock. D3.js data-driven documents.

British Library C.9.d.4, f.1. Gutenberg’s (42-line) Bible.

T. Dreher. History of Computer Art.

F. T. Marchese. Medieval information visualization. VIS, 2013.

S. K. B. . S. J. Palmer, S. E. Visual aesthetics and human preference.
Annual Review of Psychology, 64: 77-107, 2013.

C. Plessl. wkpdf.

Syracuse University Library. Medieval Manuscripts of Syracuse University
Library.

E. W. Weisstein. ”Folium.” From MathWorld-A Wolfram Web Resource.

(6]
(71

(8]

35

Towards Real-time Spectrum Monitoring

Ana Nika, Zengbin Zhang, Xia Zhdu Ben Y. Zhao, Haitao Zheng
Department of Computer Science, UC Santa Barbdbapartment of Computer Science, Dartmouth College
{anika, zengbin, ravenben, htzheng}@cs.ucsb.edu, xia@cs.dartmouth.edu

I. INTRODUCTION

Radio spectrum is one of the most sought-after resources in
the world. But, despite the value placed on wireless spectrum,
little attention has been paid to a difficult problegpectrum
enforcement, i.e. how to detect and locate unauthorized users
whose transmissions may interfere and disrupt transmissions
from authorized spectrum users. Spectrum enforcement face:
two important challenges. First, perhaps the biggest challenge (a) RTL-SDR/Laptop (b) RTL-SDR/smartphone
is how to gather detailed spectrum measurements with strong Fig. 1. RTL-SDR connected to a laptop or a smartphone
coverage of deployed regions. Second, given the dynamics of

wireless performance and mobility of users, these measure- .
ments should be “real-time”. In contrast, today’s spectruﬁ?haves as a “data processor” and translates the raw data into

measurements are carried out by government employees dfiydata stream that is more compact and meaningful f(.)r the
ing around with spectrum analyzers and specialized hardw&f@nitoring system. Figurél 1 illustrates two prototypes: the

that is usually bulky, expensive, and difficult to operate. ~ RTL-SDR connected to a laptop and a smartphone.

Our solution to the spectrum monitoring problem is to More specifically, the RTL-SDR devic¢l[1] is a DVB-T
leverage the power of the massé® millions of wireless dongl_e that operates on the frequency_range of 52-2200MHz,
users, using low-cost, commoditized spectrum monitorirf@Verng @ wide range of todays wireless networks, and
hardware. We envision an ecosystem where crowdsourcdPPOrts a maximum sample rate of 2.4MHz. The portable
smartphone users perform automated and continuous spectflf{ce can transfer on the fly raw 1/Q samples to the host it is
measurements using their mobile devices and report the resGREnected to. We also built necessary software to interconnect
to a monitoring agency in real-time. Our proposed systefd® Wwo hardware components. For smartphones, we built
integrates two components: crowdsourcing measurement an Android app on top of the existing RTL-SDR colle _
framework that gathers spectrum measurement data in wiff@" the laptop version, we leveraged the open-source project
areas and |ow-cost mobile platform that allows crowdsourced PYRTLSDRA. After obtaining the raw 1/Q samples from the
users to perform spectrum measurements automatically FiL-SDR device, the mobile host performs FFT to produce
real-time. Our current prototype leverages commodity mobiRPWer spectrum density map of the collected signal. These
devices (Android smartphones and laptops) and portable RT6&" be used to identify active transmissions or detect useful
SDR devices as spectrum sensors. features related to spectrum misuse detecfion [3].

We performed initial measurements to compare the efficacy [1I. INITIAL FEASIBILITY RESULTS
of our low-cost monitoring platform to that of conventional | this section, we evaluate the feasibility of using low-

monitoring devices like USRP GNU radios. Based on oyost mobile platform (RTL-SDR) for spectrum monitoring.

results, we believe a real-time spectrum monitoring system \igsmpared to sophisticated hardware like USRP GNU radios,
crowdsourcing and commaoditized hardware is indeed feasigie, RTL-SDR device has two key limitations:

in the near future. We conclude by identifying a set of open Limited Sensing Sensitivity: While USRP outputs 14-bit 1/Q
challenges and potential directions for follow-up research. Tg@amples, RTL-SDR outputs 8-bit I/Q signal samples. Because
the best of our knowledge, we are the first to propose a reabf this resolution difference, RTL-SDR is less sensitive to
time spectrum monitoring system using crowdsourcing angveak signals and can fail to detect them.

commodity mobile devices. o Limited Sensing Bandwidth: While USRP supports up
II. AREAL-TIME SPECTRUMMONITORING PLATFORM to 20MHz bandwidth, RTL-SDR can only support up to

Our spectrum monitoring platform has two hardware com2-4MHz. In order to monitor a frequency band wider than
ponents: a commodity mobile deviceg. smartphones/laptop 2-4MHz, RTL-SDR needs to sweep the band sequentially.
and a cheap ($20) and portable Realtek Software DefinedThis means that it can fail to detect certain short-term
Radio (RTL-SDR) that connects to smartphones/laptops via #ansmissions that occupy a portion of the frequency band.
USB cable. The RTL-SDR behaves as a “spectrum analyzerinps:/github.com/keesjflibrtisdr-android
and collects raw spectrum usage signal, while the mobile hosthttps://github.com/roger-/pyrtlsdr

36

Next, we perform measurement studies to understand thes (based on our previous result) per 2.4MHz segment. We
implications of these limitations on spectrum monitoringconfigure the USRP device to monitor the same band. We
Specifically, we evaluate and compare three monitoring pladlentify that the scan delay of RTL-SDR is two times higher
forms: a USRP N210 radio connected to a laptop, a RTL-SOIRan USRP because its frequency switching delay is higher.
radio connected to a laptop and a RTL-SDR radio connectéée observe that the switching delay of RTL-SDR is upper
to a smartphone. All three platforms use the same antertmaunded by 50mavith a median of 16mavhile USRP takes
model and all three antennas are co-located. a stable value of 3msOverall, the RTL-SDR radio can finish
scanning a band of 240MHz bandwidth within.2s

A. Impact of Sensing Sensitivity .))
. . o Impact on Spectrum Monitoring. We quantify the impact
We start from quantifying the sensing sensitivity dn‘ferencgf RTL-SDR's sensing bandwidth on spectrum monitoring

between USRP_ and RTL-SDR using npise and signal measyll-the amount of signal detection errors it can lead to. We
ments.We configure all three monitoring platforms to oper easure the detection error rate for monitoring a 24MHz
on a 2.4MHz band. _ _ band and a 120MHz band. For the 24MHz band, the RTL-
Signal and Noise Measurements. First, we perform noise spRr/smartphone achieves less than 10% detection error even
measurements and we identify that once the sensing duratighen detecting highly dynamic signal events. As the band

increases beyond linthe RTL-SDR based platforms performpecomes wider (120MHz), the error rate can reach 35% if the
similarly to the USRP platform. Next, we perform signakigna| is highly dynamic.

measurements by turning on a transmitter to emit OFDMvercoming the Bandwidth Limitation.
signals continuously. We vary the transmit power to cre
signals of different signal-to-noise-ratio (SNR). Due to RT
SDR’s limited sensitivity, the corresponding two monitori
platforms report lower SNR values (:3dB lower for RTL-

There are two
a'EJ‘?)tential directions to address the bandwidth limitation. First,
L\'/ve can leverage the power of the crowd, either dividing each
NQvideband into several narrow bands and assigning users to
specific narrow bands, or aggregating results from multiple
SDR/smartphone, are8dB lower for RTL-SDR/laptop) com- users whose scans are inherently asynchronous. Second, we
pared to the USRP platfo-rm.. can leverage existing wideband sensing techniques such as
Impact on Spectrum Monitoring. Our above results show QuickSense[[4] or BigBand 2], which apply efficient signal

that the limited sensitivity of RTL-SDR leads to 8-13dB losgearch algorithms to perform wideband sensing using narrow-
in SNR reports, which means that it cannot capture wegknd radios.

signals reliably. To further understand this impact, we identify
the SNR level that can be detected by each platform. The IV. ADDITIONAL CHALLENGES

USRP platform can reliably detect signals with SNR - Finally, we discuss several key challenges and potential
2dB, which increases to 7dB for RTL-SDR/laptop and 10deesearch directions to address them.

for RTL-SDR/smartphone. Such 12dB difference translatéghieving Adequate Coverage. With crowdsourcing, a
into roughly 50% loss in distance, which means that th@actical challenge is how to ensure adequate coverage. One
coverage requirement for a monitoring system using RTIpotential solution is to adopt a combined in-network and
SDR/smartphone devices needs to be 50% denser than thatof-network mechanism. Passive measurements will be
using USRP/laptop. This should be easily achievable usingllected from each wireless service provider's own user
our proposed crowdsourcing approach. population and measurements from users of other networks

Addressing the Sensitivity Limitation. There are two can be requested as necessary to augment passive data.

potential methods to address the sensitivity limitation. Fird¥Jinimizing Measurement Overhead. A practical design

with crowdsourcing, we can deploy many monitoring devicesust account for energy consumption and bandwidth cost to
in a given area to reduce the sensitivity requirement aitract crowdsourcing participants. One research direction is
each individual device. Second, we can exploit certain sigrtal schedule measurements based on user context, including
features such as pilot tones or cyclostationary features that ¢@cation, device placement, user movement speed/direction,
potentially relax the per-device sensitivity requirement. statistics of observed signals, and density of nearby trans-
mitters. Furthermore, one can explore novel data compression

B. Impact of Sensing Bandwidth . .
] _ } ~algorithms that compress spectrum reports on the fly without
Next, we investigate the impact of RTL-SDR's limitedyjssing significant events.

sensing bandwidth,e. 2.4MHz compared to USRP’s 20MHz.
To monitor a frequency band wider than 2.4MHz, the device REFERENCES
must scan the band sequentially in segments of 2.4MHZ%. http://sdr.osmocom.org/trac/wiki/rtl-sdr.

it ;] HASSANIEH, H., ET AL. Ghz-wide sensing and decoding using the sparse
Intuitively, the overall scan delay is the product of the numbé#! ourier transform. INNFOCOM (2014).

of sggments &_md the sum of the sensing time per segment gdyang, L., £T AL. Enforcing dynamic spectrum access with spectrum
the time required to switch between frequency segments. permits. InMobiHoc (2012).

To examine the scan delay we configure the two RTI4] YooN, S..ETAL. Quicksense: Fast and energy-efficient channel sensing
- . " . . for dynamic spectrum access networks.|INFOCOM (2013).
SDR monitoring devices to monitor a wideband of bandwidth ynamic spectru (2013)
between 24MHz and 240MHz, with a sensing duration of

37

http://sdr.osmocom.org/trac/wiki/rtl-sdr

/B, UC SANTA BARBARA
- engineering

http://gswc.cs.ucsb.edu

http://cs.ucsb.edu

