Geo-placement: Geo-replicated Database Placement

Victor Zakhary Faisal Nawab

Divyakant Agrawal Amr El Abbadi

Department of Computer Science, University of California, Santa Barbara, CA 93106
Email:{victorzakhary,nawab,agrawal,amr } @cs.ucsb.com

Abstract—Geo-replication is the process of maintaining copies
of data at geographically dispersed datacenters for better avail-
ability and fault-tolerance. The distinguishing characteristic of
geo-replication is the large wide-area latency between datacenters
that varies widely depending on the location of the datacenters.
Thus, choosing which datacenters to deploy a cloud application
has a direct impact on the observable response time. We propose
an optimization framework that automatically derives a geo-
replication placement plan with the objective of minimizing
latency. By running the optimization framework on real place-
ment scenarios, we learn a set of placement principles for
geo-replication. In this paper, we highlight the geo-replication
placement principles.

I. INTRODUCTION

Geo-replication is used to bring data closer to the user
and to increase the level of read availability. When geo-
replicating a cloud application, the system administrator is
faced with an important design decision: at which datacenters
should the data be placed? Cloud providers offer more than
a few datacenters for deployment (e.g., Amazon AWS hosts
applications in 10 datacenters around the world each with
multiple availability zones). With multiple cloud providers,
the possibilities for geo-replicated deployments are the subsets
of tens of datacenters. The placement decision affects many
performance characteristics.

In this work, we focus on the effect of geo-replication
placement on the response time for transactional workloads
with serializability as the correctness guarantee. The topol-
ogy affects response time differently for different replication
protocols. Our study focuses on majority protocols.

We propose an optimization framework to make geo-
replication placement decisions. The optimization framework,
framework for short, constructs a model of the system. The
model includes the topology, workload, and user distribution.
Then, the model is used in an optimization problem for-
mulation with the objective of minimizing response time in
addition to adhering to fault-tolerance and quality-of-service
guarantees. The model incorporates a set of best practices, or
principles, for geo-replication placement.

II. BACKGROUND

System model. Our model of geo-replication consists of
a topology of datacenters and clients executing transactional
workload. Data is fully replicated to a subset of datacenters.
Users issue transactions that consist of read and write opera-
tions. Each client execute transactions back-to-back. The exe-
cution of transactions depends on the replication protocol. We
focus in this work on majority protocols. Majority protocols

vary widely and next, we explain the variation that we use of
the majority protocol.

Majority. We adopt a variant of the majority protocol. A
client executes a transaction by performing the reads and
buffering the writes. Read requests are sent to a majority of
datacenters. The highest version read is used. After executing
reads and writes a vote request is sent to datacenters. The vote
request consists of the read versions and the buffered write
operations. Each datacenter, upon receiving a vote request,
attempts to lock objects that are being written. Additionally, it
verifies that the read versions were not overwritten. If both
are successful, the datacenter sends back a positive vote.
Otherwise, a negative vote is sent. The client commits the
transaction if a majority of positive votes is received and aborts
the transaction otherwise. The client sends the decision to all
replicas. Once a majority acknowledges the receipt of the
decision, the transaction terminates. The transaction latency
is the time from the beginning of executing operations until
terminating the transaction. We define the commit latency as
the time spent committing the transaction, which is equivalent
to the transaction latency without the time spent executing
operations.

Related work. Geo-replication and data placement are areas
that have undergone extensive research. Recent works study
the problem of data placement for geo-replication [4], [2], [1].
Spanstore [4] is the closest work to our optimization frame-
work. It tackles the data placement problem in geo-replication
using an optimization formulation. Ping et. al. [2] propose the
use of a utility function to derive a placement that balances
between speed and availability. Volley [1] analyzes usage
logs and leverages an optimization formulation to place data
partitions. Unlike our optimization framework, these works do
not support a multi-access transactional workload with strong
consistency. A transactional workload requires more complex
coordination between replicas to detect conflicts. In addition,
our framework is designed to engage in the design decisions
of which techniques to be used in the replication protocol,
and illuminates unintuitive optimizations to achieve a better
performance.

III. GEO-REPLICATION PLACEMENT
Optimization Framework

Where copies of data are placed is a critical design decision
that affects, among others, the performance of the application.
To address the large space of placements and replication
protocol variations, we developed an optimization framework.
The framework takes as input the replicas network topology,



Fig. 1. An example of replicating to four datacenters in Oregon (O), Virginia
(V), California (C), and Ireland (I)

workload parameters, and availability constraints. It searches
through the space of placements and protocol variations and
chooses the ones that minimizes response latency. In our study,
we have repeatedly seen a set of optimizations reoccur. Some
of them are straight-forward and some of them are surprising.
Next, we summarize the derived placement principles for geo-
replicated systems.

Commit hand-off. In a fully-replicated system, a client
accessing data typically sends the transaction request to the
local, or closest, replica. Our optimization framework shows
that this is not always the best practice in a geo-replicated
environment; it is sometimes better to send the transaction
request to a datacenter other than the local one. For example,
consider Figure 1 that shows an example of geo-replication:
four datacenters in Oregon (O), Virginia (V), California (C),
and Ireland (I). The communication Round-Trip Times (RTTs)
between the datacenters are shown in the figure. The RTTs
between Ireland and the other datacenters are significantly
higher than the remaining RTTs. Assume that a majority
protocol is used to commit transactions in this scenario. The
commit latency of a majority protocol is two RTTs to the
closest majority. Thus, the commit latency of clients in Oregon
is 132ms, in California and Virginia is 156ms, and in Ireland
is 350ms.

The large latency of clients in Ireland is due to the common
convention that driving the transaction commitment from
the local datacenter is the best practice. However, running
this scenario in our optimization framework shows that this
convention is not always true. In fact, clients in Ireland
are in a better position sending their transaction requests to
Virginia. Committing a transaction in Virginia takes 156ms.
And sending the request from Ireland to Virginia and waiting
for the decision to be sent back takes 84ms. This means that
the commit latency becomes the sum of the two latencies,
which is equal to 240ms achieving 31% improvement for
clients in Ireland.

Passive replicas. Our second principle is a byproduct of the
commit hand-off principle. In the scenario in Figure 1, when
applying the hand-off principle, clients at Ireland send their
transaction requests to Virginia. Clients in other datacenters
send transaction requests to their local replicas. This means
that the replica at Ireland does not receive transaction requests.
With this knowledge, it is easy to observe that the demand
placed on Ireland is lower than the other datacenters. For most

of the time, Ireland will only serve read requests and receive
the outcome of transactions and not drive the commitment of
transactions. Thus, less resources need to be provisioned in
Ireland and more resources need to be provisioned elsewhere.

When the optimization framework recommends the hand-
off principle, it is sometimes accompanied by an interesting
side effect. The side effect is that the replica that is not
receiving transaction requests becomes a passive replica. A
passive replica is a replica that serves read requests but does
not engage in the commit protocol. This means that it does not
become part of the majority protocol, but more like a cache
of data used for reading. In the example in Figure 1, this
means that the majority protocol will involve getting votes
only from Oregon, Virginia, and California. The number of
replicas to constitute a majority has thus been lowered from
three replicas when four datacenters were involved to two
replicas now that only three replicas are involved. This makes
the transaction latency of Oregon and California 38ms, of
Virginia 132ms, and of Ireland 216ms. Making Ireland a
passive replica reduced the average latency by 39% which
is useful for systems that require to tolerate only a single
datacenter failure.

Optimistic reading. A conventional majority protocol reads
from a majority of replicas to ensure that the most recent
version is read. However, it is possible to optimistically read
from the local replica only, and then validate the read in a
majority of replicas in the commit phase [3]. The choice of
whether to read optimistically or from a majority is controlled
by a trade-off between the latency of read operations and
contention. An optimistic read lowers the read latency but it
increases contention because the version at the local replica
might be stale. Reading from a majority requires a larger la-
tency but ensures getting the most recent version. Running our
optimization framework on various geo-replication scenarios
reveals that optimistic reads are more favorable.

IV. CONCLUSION

In geo-replication, the location of replicas plays a significant
role in performance. We have developed an optimization
framework that derives the optimal placement of replicas.
Unlike prior work, our optimization framework models a
transactional workload. Geo-replication placement principles
are derived using the optimization framework. Most surprising
is the hand-off principle, which shows that sometimes it is
rewarding to send transaction requests to a farther datacenter
rather than the local one.

REFERENCES

[1] S. Agarwal et al. Volley: Automated data placement for geo-distributed
cloud services. In NSDI, 2010.

[2] F. Ping, J.-H. Hwang, X. Li, C. McConnell, and R. Vabbalareddy. Wide
area placement of data replicas for fast and highly available data access.
In the International Workshop on Data-intensive Distributed Computing
(DIDC), 2011.

[3] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM TODS, 1979.

[4] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha. Spanstore: Cost-effective geo-replicated storage spanning mul-
tiple cloud services. In SOSP, 2013.



