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Abstract—Researchers have contributed promising new tech-
niques for allocating cloud resources in more robust, efficient, and
ecologically sustainable ways. Unfortunately, the wide-spread use
of these techniques in production systems has, to date, remained
elusive as their evaluation frequently relies on exploratory, model-
driven simulation only.

We present a new methodology that complements existing
model-driven simulation with platform-specific and statistically
validated quantitative results. We simulate systems at scales and
on time frames that are testable, and then, based on the statistical
validation of these simulations enable investigation of scenarios
beyond those feasibly observable in practice.

I. INTRODUCTION

Cloud computing realizes the long-held vision of comput-
ing as a utility and is increasingly successful in both public
provider and private enterprise settings. Public cloud providers
such as Amazon AWS [1] and Google Cloud Platform [2]
often hold the specifics of their implementation as trade-secrets
and validation of academic research results in production
settings is difficult. Fortunately, private enterprise clouds are
often based on open-source IaaS cloud frameworks such as
Eucalyptus [3], [4] and OpenStack [5] which allow for in-depth
analysis, customization, and optimization and have attracted
the interest of the research community. Software deployed in
mission-critical infrastructure, however, must be reliable. Thus,
modifications and extensions to open-source clouds require
production quality engineering and thorough testing before
they can be deployed.

As a specific example, when introducing new software
components into Eucalyptus IaaS, decision makers are faced
with the question of whether an engineering effort will pay
off, which breaks down into two parts:

• Will this intrusive modification break the system or
threaten its stability in corner cases?

• Do its benefits under real-world conditions out-weigh
the investment required for engineering and quality-
assurance?

Validated simulation provides reliable answers to both ques-
tions to better inform decision making by engineering lead-
ership. Furthermore, validated models can guide the design
and implementation process and ease the transfer of research
artifacts into production. We emphasize this approach is com-
plementary to existing simulators, as it trades off ease of
modification and flexibility for quantitative accuracy.

Our method for building validated simulation models is
inspired by Perturbation Theory [6]. We employ an end-to-end
modeling approach that starts with a parsimonious analytical
model of the system. We then incrementally “perturb” the
model by adding empirical noise terms to improve accuracy.

II. CREATING ACCURATE END-TO-END SIMULATION
MODELS

The goal of our methodology is to use an, alternative,
“top down” approach to simulation that models only those
parameters that are necessary to capture the behavior of the
component of interest with sufficient accuracy. Our work
explores an approach rooted in perturbation theory [6] that
focuses on validation of simulated results against empirical
measurements (at the cost of flexibility and extensibility) as a
way of addressing the engineering needs that cloud developers
and practitioners have. Identifying the parameters of this model
requires an understanding of the fault isolation properties of
the platform which, in our example use case, comes from
source code inspection. The fault isolation properties establish
the independence of our model parameters which is required
for trustworthy scaling of our simulations.

The approach is to:

1) start with the most parsimonious model of end-to-
end behavior that is possible, identified via white-box
inspection of the framework architecture,

2) perturb the model using statistical sampling technique
to represent unmodeled behavior,

3) test the model by comparing its outputs generated
in simulation to measurements taken from the “real
world” system,

4) if the model is insufficiently accurate, add terms,
adjust the perturbation, and repeat.

Thus every addition of a variable to our model of the cloud
should be justified by a necessary increase in accuracy. Vari-
ables that only contribute marginally to the aggregate result are
omitted and modeled in aggregate as “perturbing” error terms.
Since this “noise” is not deterministic our approach takes the
form of Monte-Carlo simulation with statistical results.

We then extract performance information from a running
private cloud to fit and evaluate the simulation model. This
requires two types of measurements: those we use to introduce
perturbations (e.g. VM start-up, termination, etc.) and those
that we use to validate the model predictions (the aggregated
CPU-time and up-time).



TABLE I: Utilization per Node (Log-normal trace)

All A B C D E F
sim (mean) 0.3974 0.8555 0.7305 0.5140 0.1960 0.0665 0.0217
sim (sd) 0.0045 0.0024 0.0053 0.0082 0.0039 0.0001 0.0023
real (mean) 0.3985 0.8550 0.7223 0.5213 0.2025 0.0696 0.0202
real (sd) 0.0043 0.0022 0.0046 0.0059 0.0050 0.0037 0.0036
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Fig. 1: Workload trace with power-optimizing scheduler acti-
vated at the 5 hour mark. The dotted line shows the fraction
of online nodes.

III. FITTING AND EVALUATING THE MODEL

For our empirical measurements we use a seven node
commodity hardware cluster. Each node runs on CentOS v6.5
and holds four cores, 8 GB ram, and a 500 GB hard drive and
is connected to the network via two 1 Gbit Ethernet links. We
set up Eucalyptus v3.4.2 with a dedicated head and storage
node and six nodes serving as instance hosts.

We first execute a benchmark trace on a single node, which
has been separated from the seven node Eucalyptus cloud
to collect “noise” distributions without interfering with the
system at large. Specifically, we collect data on instance launch
delay and the termination delay.

To evaluate the accuracy of our simulation model we then
execute an independent test trace on both, our simulator and
our real-world testbed. The workload has a duration of 10
hours and a mean utilization of 1/3 of the 6 node cluster and
activates the power-management feature of the scheduler at
the 5 hour mark. The trace is generated from a log-normal
distribution for inter arrival time and durations. The mean
inter arrival time is 81 seconds and the mean duration is 785
seconds.

Our results show agreement between prediction and real-
world measurement as scale. We repeat simulation and real
world runs 12 times (a total of 120 hours) for each trace
separately and compute the averages. For visualization, an
exemplar run from the benchmarks is shown in the graph
in Figure 1. The figures depict the activity of the power
management over time. The y-axis represents the number
of cores used, normalized to maximum capacity. The x-axis
represents time in one hour (3600 seconds) intervals. The solid
line shows the number of cores occupied by instances in the
cluster.

The average utilization per node and the respective standard
deviation for the trace can be found in Table I. We find a good
match between simulation and real world observation, with the
largest per-node difference of less than 1 percent.

IV. RELATED WORK

We base this paper on an original version [7] that appeared
in the IEEE International Conference of Cloud Engineering.
Our work leverages a significant body of work on distributed
systems technologies and on methodologies and best practices
for validation of large scale systems using real-scale exper-
iments, emulation, benchmarking, and simulation [8]. The
authors of this survey discuss the importance of ab initio (high-
level, imprecise, easily composable, and extensible simulation
for use in comparative analysis and exploration) and validated
simulation (simulation that produces behavior that matches that
of a real system with low error).

We also gained insights about the specific workloads in
private clouds (which we use to drive our synthetic workload
generation) from our previous work described in [9].

V. CONCLUSIONS AND FUTURE WORK

Simulation plays a key role in performing experimental
exploration into large scale systems and has significant poten-
tial for facilitating research and experimentation with cloud
systems. Existing approaches aim for ab-inito, exploratory
simulation of cloud systems only. The transfer of technology
into production deployments, however, requires a degree of
quantitative accuracy they do not provide.

In this work, we present a new, complementary methodol-
ogy for facilitating trust in the quantitative accuracy of cloud
simulation inspired by a tool employed in the physical sciences
for simulation called perturbation theory. We find that the
perturbation approach achieves high accuracy for simulating
an existing system and creates a foundation for evaluating the
efficiency of cloud schedulers ahead-of-time.
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