
TaoStore: Overcoming Asynchronicity in Oblivious
Data Storage

Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia (Rachel) Lin, Stefano Tessaro
University of California, Santa Barbara

{cetin, victorzakhary, amr, rachel.lin, tessaro}@cs.ucsb.edu

Abstract—We consider oblivious storage systems hiding both
the contents of the data as well as access patterns from an un-
trusted cloud provider. We target a scenario where multiple users
from a trusted group (e.g., corporate employees) asynchronously
access and edit potentially overlapping data sets through a trusted
proxy mediating client-cloud communication.

The main contribution of our paper is twofold. Foremost,
we initiate the first formal study of asynchronicity in oblivious
storage systems. We provide corresponding security definitions
and show that CURIOUS (Bindschaedler at al., CCS 2015) is inse-
cure under asynchronous scheduling of network communication.
Second, we develop and evaluate a new oblivious storage system,
called Tree-based Asynchronous Oblivious Store, or TaoStore for
short, which we prove secure in asynchronous environments.
TaoStore is built on top of a new tree-based ORAM scheme
that processes client requests concurrently and asynchronously
in a non-blocking fashion. This results in a substantial gain in
throughput, simplicity, and flexibility over previous systems.

I. INTRODUCTION

Outsourcing data to cloud storage has become increasingly
popular and attractive. Still, confidentiality concerns make
potential users skeptical about joining the cloud. In this
context, encryption alone is not sufficient to solve all privacy
challenges. Indeed, the access patterns are not hidden from
the cloud provider, i.e., the provider can detect for example
whether and when the same data item is accessed repeatedly,
even though it does not learn what the item actually is.
Data access patterns can leak sensitive information using prior
knowledge as shown in [2].

This work targets cloud storage where multiple users from
a trusted group (e.g., employees of the same company) need to
access (in a read/write fashion) data sets which may overlap.
To achieve this, users’ accesses are mediated by a shared
(trusted) proxy which coordinates these accesses and, at the
same time, reduces the amount of information leaked to the
cloud. Oblivious RAM (ORAM) is the standard approach to
make access pattern oblivious, but most ORAM solutions [4],
[1] are not practical enough for our multi-user scenario, as
they handle operation requests sequentially. ObliviStore [3]
leverages parallelism to increase throughput and was the first
work to consider the proxy model we assume in this work.
ObliviStore was recently revisited by Bindschaedler et al. [1],
who proposed a new system called CURIOUS fixing a subtle
(yet serious) security flaw arising in concurrent environments.

Motivated by Bindschaedler et al. [1], this work initiates a
comprehensive and rigorous study of asynchronicity in oblivi-
ous storage systems. We make contributions along two axes:

1) We observe that the previous treatment has not captured
crucial security issues related to asynchronicity in oblivious
storage. We present a comprehensive security framework, and
surface an attack showing that access patterns in CURIOUS
are not oblivious in an asynchronous environment. 2) We
design and evaluate a new provably secure system, called
TaoStore, that fully resists attacks in asynchronous settings
and also fully leverages the benefits of asynchronicity for
better performance. Our system follows a completely different
paradigm than previous works – in particular it departs from
the ObliviStore framework and is completely tree-based – with
substantial gains in simplicity, flexibility, and efficiency.

II. ASYNCHRONOUS ORAM: DEFINITIONS AND ATTACKS

Traditional ORAM security definitions consider syn-
chronous and non-concurrent (i.e., sequential) systems. Here,
we introduce the new notion of adaptive asynchronous obliv-
iousness, or aaob-security, for short. The attacker schedules
read/write operation requests (which are possibly concurrent)
at any point in time, and also controls the scheduling of
messages. Moreover, the attacker learns when requests are
answered by the ORAM client (i.e., the client returns an
output), which as we see below, is very crucial information
difficult to hide in practice.

We now proceed with definition of aaob security, which
is an indistinguishability-based security notion. Given an at-
tacker A, we consider an experiment ExpaaobORAM(A) where the
ORAM client OClient accesses a storage server SS via an
asynchronous link. In this experiment, A chooses two equally
large data sets, D0, D1, and samples a random challenge
bit b $← {0, 1}. Db is encoded and stored on the SS and
the secret key is given to OClient. The attacker A can, at
any point in time, invoke OClient with a pair of operation
requests (opi,0, opi,1), where both requests can be for arbitrary
read/write operations. Then, operation request opi,b is handed
over to OClient. When the operation completes, the adversary
A is notified, yet it is not told the actual value returned by this
operation. Finally, the adversary A outputs a guess b′ for b,
and the experiment terminates. In particular, if b = b′, we say
that the experiments outputs true, and otherwise it outputs
false.

We define the aaob-advantage of the adversary A against
ORAM as

AdvaaobORAM(A) = Pr
[
ExpaaobORAM(A)⇒ true

]
− 1

2
.



We say that ORAM is aaob-secure (or simply, secure) if
AdvaaobORAM(A) is negligible for all polynomial-time adversaries
A (in some understood security parameter λ).

Attack against CURIOUS: To overcome the security issue in
ObliviStore, CURIOUS [1] suggested an alternative approach
based on the idea that a concurrent operation on the same item
should trigger a “fake read”. When two concurrent requests
for the same item are made in CURIOUS, the first request
results in the actual “real read” access to the server fetching
the item, whereas the second results in a fake access to the
storage server SS to hide the repeated access. This gives the
attacker a simple mean to break aaob security, and distinguish
the b = 0 from the b = 1 case, by simply scheduling two pairs
of operations (op1,0, op1,1), (op2,0, op2,1), where op1,0 and
op2,0 are two read requests for the same item, whereas op1,1
and op2,1 are read requests for distinct items. Concretely, the
adversary A first issues the request pair (op1,0, op1,1), delays
the messages sent by OClient right after the first operation pair
is processed, schedules the second request pair (op2,0, op2,1),
and delivers the associated messages to SS, and its replies
back to OClient immediately. If this results in an answer to
the second operation being triggered immediately, the attacker
guesses b = 1, otherwise it guesses b = 0.

III. OVERVIEW OF TAOSTORE

Motivated by the above concerns, we develop and evaluate
TaoStore, a fully-concurrent provably secure multi-user ob-
livious data store. It relies on a tree-based ORAM scheme
aimed at fully concurrent data access. Tree-based ORAMs
like Path ORAM [4] organize server storage as a tree, and
server access is in form of retrieving or overwriting data
contained in a path from the root to some leaf. Our new
ORAM scheme – TaORAM – resembles Path ORAM, but
features a novel approach to manage multiple paths fetched
concurrently from the server without waiting for on-going
flush and write-back operations to complete. All operations
are done asynchronously1: a) At the arrival of a request
for a certain block, the appropriate read-path request is sent
immediately to the server. b) Upon the retrieval of a path from
the server, the appropriate read/write requests are answered,
and the path is flushed and then inserted into a local subtree
data structure. c) Immediately after flushing a certain number
k of paths, their re-encrypted contents are written back to the
server (and appropriate nodes deleted from the local subtree).

To prevent the same attack affecting CURIOUS, TaORAM
runs an additional auxiliary module sequencer, whose sole
function is enforcing that logical requests are replied to in
the same order as they arrive.

Obliviousness: Path ORAM crucially relies on the fact
that a block is assigned to a fresh new random path after each
access to hide future accesses to the same block. However,
in TaORAM, a request for a block is processed immediately,
without waiting for other concurrent accesses to the same

1Here, we highlight the fundamentals of our approach. See the full version
of the paper for more details.

block to properly complete and “refresh” the assigned path.
If handled naively, this would lead to fetching the same
path multiple times, leaking repetition. TaORAM resolves this
issue, by keeping track of all requests for the same block
so that at each point, only one request triggers reading the
actual assigned path, whereas all others trigger fake reads for
a random path.

Security and correctness: TaORAM is aaob-secure; due
to the space constraints, we defer the formal proof to the full
version. In particular, a key contribution of our construction
is the introduction of a sequencer module aimed at preventing
our attacks affecting other systems. Correctness is potentially
jeopardized when there are multiple on-going read-path and
write-back operations to the server. The most prominent issue
is that before all write-back operations complete, the contents
at the server are potentially out-of-date; hence answering
requests using paths read from the server could be incorrect.
To overcome this, TaORAM keeps a so-called fresh-subtree
invariant: The contents on the paths in the local subtree and
stash are always up-to-date, while the server contains the
most up-to-date content for the remaining blocks. Moreover,
every path retrieved from the server is first “synched up”
with the local subtree, and only then used for finding the
requested blocks, which is now guaranteed to be correct by the
fresh-subtree invariant. Additionally, correctness (i.e., atomic
semantics) remains guaranteed, regardless of the scheduling of
messages sent over the network, which is asynchronous and
can even be in total adversarial control.

Evaluation: We implemented a prototype of TaoStore and
conducted two different evaluations: (1) A local evaluation
(with the same experimental set up as in [3]) to compare
it with ObliviStore, and (2) A cloud-based evaluation (using
Amazon EC2) to test our system in real-world connectivity
scenarios. The first evaluation shows for example that TaoStore
can deliver up to 57% more throughput with 44% less response
time compared to ObliviStore. Our cloud-based evaluations
show that while TaoStore’s throughput is inherently limited by
bandwidth constraints, this remains its main limitation – our
non-blocking write-back mechanism indeed allows TaoStore’s
performance scale very well with increasing concurrency and
decreasing memory availability at the proxy.

REFERENCES

[1] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practicing
Oblivious Access on Cloud Storage: The Gap, the Fallacy, and the New
Way Forward. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 837–849, New
York, NY, USA, 2015. ACM.

[2] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In 19th
Annual Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012, 2012.

[3] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud
storage. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 253–267, 2013.

[4] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: an extremely simple oblivious RAM protocol.
In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 299–310,
2013.

2


	Introduction
	Asynchronous ORAM: Definitions and Attacks
	Overview of TaoStore
	References

