
Automatically Computing Program Path Complexity
Lucas Bang, Abdulbaki Aydin, and Tevfik Bultan

I. INTRODUCTION

Recent automated software testing techniques focus on
achieving path coverage. We present a program complexity
measure, path complexity, that provides an upper bound for
the number of paths in a program, and hence, can be used for
assessing the difficulty of achieving path coverage for a given
method during automated testing.

We define the path complexity of a program as a function
path(n) that takes a depth bound n as input: path(n) returns
the number of paths π in the program’s control flow graph
(CFG) from start to exit with length Lπ ≤ n, where Lπ is the
number of edges in π. Consider the CFG given in Fig. 1(b).
It is not possible to have a path with Lπ ≤ 5 so path(n) = 0
for 0 ≤ n ≤ 5. By inspection we can see that there are 10
different paths with Lπ ≤ 12, so path(12) = 10. It turns out
that path(n) = O(n2) due to the two independent loops.

In this paper, we show how to automatically compute a
sound upper bound for path(n) in closed form, and the
asymptotic path complexity which identifies the dominant term
in the path complexity function. Path complexity focuses
only on the control flow structure and cannot determine the
difficulty of finding input values that can exercise a certain
branch condition. However, due to this abstraction, path com-
plexity can be computed efficiently. We describe the details of
computing our path complexity metric in the next section.

II. COMPUTING PATH COMPLEXITY

We make use of techniques from algebraic graph theory
and analytic combinatorics to count the number of execution
paths of a CFG [2], [6], [3]. Given a CGF G with nodes N
and edges E, and a length n, we can compute the generating
function g(z) such that the nth Taylor series coefficient of
g(z), denoted [zn]g(z), is equal to path(n):

g(z) =
det(I − zT : |N |, 1)

(−1)|N |+1 det(I − zT)
. (1)

where T is the augmented transfer-matrix (an adjacency
matrix with T|N |,|N | = 1), (M : i, j) denotes the matrix
obtained by removing row i and column j from M , and I
is the identity matrix.

From g(z) = p(z)/q(z) we can derive a closed-form
function bnd(n) as a sum of products of simple polynomial
and exponential terms such that path(n) = O(bnd(n)). The
form of bnd(n) is determined by

bnd(n) =

D∑
i=1

mi−1∑
j=0

ci,jn
j

(
1

|ri|

)n
, (2)

where q(z) had D distinct roots, ri is the ith root of q(z),
mi is the multiplicity of ri, and ci are coefficients that

are determined by the first |N | terms of the Taylor series
expansion of g(z). Since path(n) = [zn]g(z) for all n, we
can define a system of |N | equations and |N | unknowns. This
system can be solved for the coefficients ci,j via linear algebra.
This gives a closed form function for bnd(n).

We extract the dominant term f(n) from bnd(n) using
standard asymptotic analysis, where bnd(n) = Θ(f(n)) if and
only if limn→∞

bnd(n)
f(n) = 1. This allows one to determine if

the path complexity of a program is asymptotic to a constant,
n, n2, n3, and so on, or bn for some exponential base b. Table I
shows the asymptotic path complexity for the CFG in Fig. 1(b)
to be quadratic as expected.

All of these steps can be carried out automatically, and we
discuss our implementation in Section IV.

III. COMPARISON WITH OTHER COMPLEXITY MEASURES.
We demonstrate that path complexity is a better complexity

measure for path coverage compared to two well-known
program complexity measures. We compare our methods to

1) Cyclomatic complexity [4], the number of linearly inde-
pendent paths in G, computed as |E| − |N |+ 2, and

2) NPATH complexity [5], the number of acyclic paths in
a program, computed dynamically using the recurrence
nPath(u,G) =

∑
euv∈G nPath(v,G−euv), where euv

is the edge from node u to node v in G.
In Fig. 1 we show the CFGs for three sample methods selected
from the Java 7 SDK: (a) an array out of bounds checking
function, (b) a search resetting function for regular expression
matching, and (c) binary search for a sorted array. One should
expect the three methods to be increasingly costly in terms of
performing automated testing; CFG (a) is simplest with only
nested conditional branching, CFG (b) has non-interleaved
loops, and (c) is most complex with nested conditional branch-
ing within a loop. In Table I we give the cyclomatic, NPATH,
and path complexities for these functions.

One can see that both cyclomatic and NPATH complexity
give only constant numbers as complexity measures. Cyclo-
matic complexity is 4 for CFGs (a) and (c) and 3 for CFG
(b) while NPATH complexity is 4 for all three methods. That
is, cyclomatic complexity is insufficient for distinguishing the
methods and NPATH cannot distinguish between the three
methods at all. Neither cyclomatic nor NPATH complexity are
adequate measures for assessing difficulty of path coverage of
a program since cyclomatic complexity does not consider paths
that are subsumed by other paths and the NPATH complexity
does not consider multiple executions of loops.

However, path complexity does capture the difference by
providing three different complexity measures for the three
methods. We see that CFG (a) has constant path complexity,

START

1

EXIT

2 3

4 5

6 7

(a) CFG for Arrays.rangeCheck

START

1

EXIT

2

3 4

5

6 7

(b) CFG for regex.Matcher.reset

START

1

EXIT

2

3 4

56

7

8 9

(c) CFG for Arrays.binSearch

Fig. 1: CFGs for three methods from Java 7 SDK’s java.utils package.

TABLE I: Results of different complexity measures from JAVA 7’s java.utils.

Method Cyclomatic
Complexity

NPATH
Complexity

Path
Complexity

Asymptotic Path
Complexity

Fig. 1(a): Arrays.rangeCheck 4 4 4 O(1)
Fig. 1(b): regex.Matcher.reset 3 4 0.12× n2 + 1.25× n+ 3 O(n2)
Fig. 1(c): Arrays.binSearch 4 4 6.86× 1.17n + 0.22× 1.1n + 0.13× 0.84n + 2 O(1.17n)

CFG (b) has quadratic path complexity, and CFG (c) has
exponential path complexity.

IV. IMPLEMENTATION AND EXPERIMENTS

We implemented the analysis of Section II in a tool called
PAth Complexity analyzer (PAC). PAC accepts a Java class
file or a jar of class files as input and reports path complex-
ity, asymptotic path complexity, cyclomatic complexity, and
NPATH complexity for each method in the provided classes.
An online demo of PAC and source code for PAC are available
from our website.1

Java 7 SDK

C = 1

C > 1 nk
bn

60.0%

30.1%

5.3%

4.6%

Apache

C = 1

C > 1 nk
bn

60.8%

27.0%

6.7%

5.5%

Fig. 2: Distribution of methods for four complexity classes: 1)
single path [C = 1], 2) constant number of paths greater than
one [C > 1], 3) polynomial [nk, k ≥ 1], and 4) exponential
[bn, n > 1].

We tested PAC by running it on the Java 7 SDK and the
Apache Commons Libraries. In Fig. 2 we give the distributions

1https://vlab.cs.ucsb.edu/PAC/

of path complexities for the analyzed methods. We find that for
the Java 7 SDK, 60% of the methods have only a single path
(do not contain branching), 30.1% have a constant number
of paths larger that 1 (contain only branching), 5.3% have
polynomial path complexity (contain non-interleaved loops
without nested branching), and 4.6% have exponential com-
plexity (contain interleaved loops or loops with nested condi-
tional branching). We observe similar results for the Apache
Commons Libraries. More detailed experimental results are
provided in [1]. All experimental results are available from
our website.1

V. CONCLUSION

We introduced a new metric for automated software testing,
called path complexity, and showed how to compute it auto-
matically. We demonstrated that asymptotic path complexity
provides a better measure of the difficulty of achieving path
coverage compared to cyclomatic and NPATH complexity. In
addition, we built a publicly available tool, PAC, based on our
techniques, and conducted an experimental evaluation of our
metric on two large, popular Java libraries.

REFERENCES

[1] L. Bang, A. Aydin, and T. Bultan. Automatically computing path com-
plexity of programs. ESEC/SIGSOFT FSE: 61-72, 2015.

[2] N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library.
Cambridge University Press, 1993.

[3] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, New York, NY, USA, 1 edition, 2009.

[4] T. McCabe. A complexity measure. IEEE Trans. Software Eng.,
2(4):308320, 1976.

[5] B. Nejmeh. NPATH: A measure of execution path complexity and its
applications. Commun. ACM, 31(2):188200, 1988.

[6] R. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University
Press, New York, NY, USA, 2nd edition, 2011.

https://vlab.cs.ucsb.edu/PAC/

	Introduction
	Computing Path Complexity
	Comparison with other complexity measures.
	Implementation and Experiments
	Conclusion
	References

