
Automata-based Model Counting String Solver

Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan

I. INTRODUCTION

Most common vulnerabilities in Web applications are due
to string manipulation errors in input validation and sanitiza-
tion code. String constraint solvers are essential components
of program analysis techniques for detecting and repairing
vulnerabilities that are due to string manipulation errors. For
quantitative and probabilistic program analyses [1], [2], [3],
[4], checking the satisfiability of a constraint is not sufficient,
and it is necessary to count the number of solutions.

In this paper, we present a constraint solver that, given a
string constraint, 1) constructs an automaton that accepts all
solutions that satisfy the constraint, 2) generates a function
that, given a length bound, gives the total number of solutions
within that bound [5]. Our approach relies on the observation
that, using an automata-based constraint representation, model
counting reduces to path counting, which can be solved
precisely.

II. A MODEL COUNTING STRING CONSTRAINT SOLVER

We first describe our string constraint language, then we
discuss how to construct automata for string constraints and
how to count number of solutions for a string constraint.

A. String Constraint Language

We define the set of string constraints using the following
abstract grammar:

F → C | ¬F | F ∧ F | F ∨ F (1)

C → S ∈ R (2)

| S = S (3)

| S = S . S (4)

| LEN(S) O n (5)

| LEN(S) O LEN(S) (6)

| CONTAINS(S, s) (7)

| BEGINS(S, s) (8)

| ENDS(S, s) (9)

| n = INDEXOF(S, s) (10)

| n = LASTINDEXOF(S, s) (11)

| S = CHARAT(S, n) (12)

| S = SUBSTRING(S, n, n) (13)

| S = REPLACE(S, s, s) (14)

S → v | s (15)

R → s | ε | R R | R | R | R∗ (16)

O → < | = | > | + | − (17)

where C denotes the basic constraints, n denotes integer
values, s ∈ Σ∗ denotes string values, ε is the empty string, v
denotes string variables, . is the string concatenation operator,
LEN(v) denotes the length of the string value that is assigned
to variable v. Semantics of the string functions are consisted
with JAVA language semantics.

This material is based on research sponsored by NSF under grant CCF-
1423623 and by DARPA under agreement number FA8750-15-2-0087.

Given a constraint F , let VF denote the set of variables that
appear in F . Let F [s/v] denote the constraint that is obtained
from F by replacing all appearances of v ∈ VF with the string
constant s. We define the truth set of the constraint F for
variable v as JF, vK = {s | F [s/v] is satisfiable}.

B. Mapping Constraints to Automata

A Deterministic Finite Automaton (DFA) A is a 5-tuple
(Q,Σ, δ, q0, F ), where Q = {1, 2, . . . , n} is the set of n states,
Σ is the input alphabet, δ ⊆ Q×Q×Σ is the state transition
relation set, q0 ∈ Q is the initial state, and F ⊆ Q is the set
of final, or accepting, states.

Given an automaton A, let L(A) denote the set of strings
accepted by A. Given a constraint F and a variable v, our goal
is to construct an automaton A, such that L(A) = JF, vK.

Let us define an automata constructor function A such that,
given a constraint F and a variable v, A(F, v) is an automaton
where L(A(F, v)) = JF, vK. In this section we discuss how to
implement the automata constructor function A.

We assume that F is converted to disjunctive normal form
(DNF) where F ≡ ∨ n

i=1Fi, Fi ≡ ∧ m
j=1Cij , and each Cij

is either a basic constraint or negation of a basic constraint.

In order to construct the automaton A(F, v) we first
construct the automata A(Fi, v) for each Fi where A(Fi, v)
accepts the language JFi, vK. Then we combine the A(Fi, v)
automata using automata product such that A(F, v) accepts
the language JF1, vK ∪ JF2, vK ∪ . . . ∪ JFm, vK.

Since we discussed how to handle disjunction, from now on
we focus on constraints of the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn

where each Ci is either a basic constraint or negation of a
basic constraint. Since a basic constraint is also a constraint,
we can use the same automata construct function for basic
constraints. In order to construct A(F, v), we first construct
the automata A(Ci, v) for each Ci where A(Ci, v) accepts
the language JCi, vK. Then we combine the A(Ci, v) automata
using automata product such that A(F, v) accepts the language
JC1, vK ∩ JC2, vK ∩ . . . ∩ JCm, vK.

To describe automata construct function A(C, v) for basic
constraints, consider the following string constraint F ≡
¬(x ∈ (01)∗) ∧ LEN(x) ≥ 1 over the alphabet Σ = {0, 1}.
Let us name the basic constraints of F as C1 ≡ ¬(x ∈ (01)∗),
C2 ≡ LEN(x) ≥ 1, where F ≡ C1 ∧ C2. Note that,
since we push down all the negations in a DNF form, we
treat negation of a basic constraint as a basic constraint.
Let us define a term t to be a node at any level of tree
rooted with a basic constraint C. As an example, Figure 1a
shows terms of basic constraints C1 and C2. We extend the
automata constructor function for terms such that A(Ci, tj)
constructs an automaton for each term t ∈ Ci. The automata
construction algorithm traverses syntax tree (terms) in a post-
order manner, and constructs the automata for each term using



∧

¬ ≥

∈ LEN 1

xx (01)∗

t1 t2

t3

t4

C1

t5

t6 t7

t8

C2

F

(a)

∧

1 2 31

0

1

0

0, 1

1 2
1

0

1

0,1

1 2
1

0

SA
T?

C2

.
.
.

A
(C

1
,
t 4
)

A
(C

1
,
t 3
)

A
(C

1
,
t 2
)

A
(C

1
,
t 1
)

(b)

1 2 31

0

1

0

0, 1

1 2 31

0

1

0

0, 1

1 2 31

0

1

0

0, 1

A
(C

1
,
t 4
)

A
(C

1
,
t 3
)′

A
(C

1
,
t 1
)′

(c)

Figure 1: (a) The syntax tree for the string constraint ¬(x ∈
(01)∗) ∧ LEN(x) ≥ 1 (b) the automata construction that
traverses the syntax tree from the leaves towards the root (c)
pre-image computation to construct automaton for the variable.

the automata constructed for its children. A term for a variable
is initialized with the latest automaton computed for the
variable (initially all variables are initialized with A(Σ∗), i.e.,
initially all variables are unconstrained) and a term for literal
is initialized with automaton A where L(A) is the literal value.
Figure 1b demonstrates the automata construction algorithm on
our running example. An automaton for t1 is constructed from
the latest value of the variable x and an automaton for t2 is
constructed based on regular expression literal. An automaton
for t3 is computed by using the automata for t1 and t2 with the
semantics of the operation ∈. Automata construction algorithm
does a satisfiability check whenever a term that is root of a
basic constraint is reached. In Figure 1b, we stop at term t4 and
check satisfiability of C1 by checking if L(A(C1, t4)) is not
∅. If the constraint is unsatisfiable, the algorithm sets A(C, v)
(which is A(C1, v) in our example) to A(∅). If the constraint
is satisfiable, we update the value of variable v by doing pre-
image computations on the path from the root term of the
basic constraint to a term that corresponds to a variable using
the pre-image computations discussed in [6]. In Figure 1c, we
start with A(C1, t4) and continue to calculate automata for
the terms on the path to variable x (t4 → t3 → t1). Finally,
A(C1, v) returns the automaton generated by A(C1, t1)′ as
new automaton for v.

A constraint F may have more than one variable where
VF denotes the set of variables that appear in F . In that case,
we use the same algorithm describe above to construct the
automata for each variable v ∈ VF . If there are two variables
appear in the same basic constraint, we do a pre-image compu-
tation for each of them. In a multi-variable constraint, for each
variable v, we would get an over-approximation of the truth-
set A(F, v) ⊇ JF, vK. We can eliminate over-approximation by
solving the constraint iteratively. At each iteration, we initialize
each A(F, v) to automaton that is obtain in previous iteration
for the same v. We stop iteration when there is no more
change in any A(F, v). Note that, using multiple variables,
one can specify constraints with non-regular truth sets. For
example, given the constraint F ≡ x = y . y, JF, xK is not
a regular set, so we cannot construct an automaton precisely
recognizing its truth set. In that case, we put a bound on the
number of iterations for constraint solver and return an over-
approximation of the truth set when bound is reached.

C. Automata-based Model Counting

Once we have translated a set of constraints into an
automaton we reduce the model counting problem into path
counting problem of graphs. We solve path counting problem
by deriving a symbolic function that given a length bound k
outputs the number of solutions within bound k. To achieve
this, we use the transfer matrix method [7], [8] to produce
an ordinary generating function which in turn yields a linear
recurrence relation that is used to count constraint solutions.

III. EXPERIMENTS AND APPLICATIONS

We implemented this approach as tool called ABC and
conducted experiments to evaluate its effectiveness [5]. We
used constraints generated from real world JAVA (116164
constraints) and JAVASCRIPT (44252 constraints) applications.
Our experiments show that ABC solves wide range of con-
straints effectively.

To test effectiveness of our model counting approach, we
do a comparison with another string model counter called
SMC [9]. We used 6 examples that are listed on SMCs web
page. For all the cases ABC generates a precise count given
the bound whereas SMC generates an upper bound and a lower
bound. ABCs count is exactly equal to SMCs upper bound for
four of the examples and is exactly equal to SMCs lower bound
for one example. For one example ABC reports a count that
is between the lower and upper bound produced by SMC.

ABC is integrated with Symbolic Java Path Finder (a.k.a
SPF) [10] and used in worst case complexity analysis and
information leakage analysis with SPF.

REFERENCES

[1] D. Clark, S. Hunt, and P. Malacaria, “A static analysis for quantifying
information flow in a simple imperative language,” J. Comput. Secur.,
vol. 15, no. 3, 2007.

[2] G. Smith, “On the foundations of quantitative information flow,” in
Proceedings of the 12th International Conference on Foundations of
Software Science and Computational Structures (FOSSACS), 2009, pp.
288–302.

[3] A. Filieri, C. S. Pasareanu, and W. Visser, “Reliability analysis in sym-
bolic pathfinder,” in Proceedings of the 35th International Conference
on Software Engineering (ICSE), 2013, pp. 622–631.

[4] M. Borges, A. Filieri, M. d’Amorim, C. S. Pasareanu, and W. Visser,
“Compositional solution space quantification for probabilistic software
analysis,” in Proceedigns of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2014.

[5] A. Aydin, L. Bang, and T. Bultan, “Automata-based model counting for
string constraints,” in CAV, 2015, pp. 255–272.

[6] F. Yu, “Automatic verification of string manipulating programs,” Ph.D.
dissertation, University of California, Santa Barbara, 2010.

[7] R. P. Stanley, Enumerative Combinatorics: Volume 1, 2nd ed. New
York, NY, USA: Cambridge University Press, 2011.

[8] P. Flajolet and R. Sedgewick, Analytic Combinatorics, 1st ed. New
York, NY, USA: Cambridge University Press, 2009.

[9] L. Luu, S. Shinde, P. Saxena, and B. Demsky, “A model counter for con-
straints over unbounded strings,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2014, p. 57.

[10] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic ex-
ecution and system-level concrete execution for testing nasa software,”
ser. ISSTA ’08. ACM, 2008, pp. 15–26.


